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ABSTRACT
Sequence-to-sequence models provide a simple and elegant solution
for building speech recognition systems by folding separate com-
ponents of a typical system, namely acoustic (AM), pronunciation
(PM) and language (LM) models into a single neural network. In
this work, we look at one such sequence-to-sequence model, namely
listen, attend and spell (LAS) [1], and explore the possibility of train-
ing a single model to serve different English dialects, which simpli-
fies the process of training multi-dialect systems without the need for
separate AM, PM and LMs for each dialect. We show that simply
pooling the data from all dialects into one LAS model falls behind
the performance of a model fine-tuned on each dialect. We then look
at incorporating dialect-specific information into the model, both by
modifying the training targets by inserting the dialect symbol at the
end of the original grapheme sequence and also feeding a 1-hot rep-
resentation of the dialect information into all layers of the model.
Experimental results on seven English dialects show that our pro-
posed system is effective in modeling dialect variations within a sin-
gle LAS model, outperforming a LAS model trained individually on
each of the seven dialects by 3.1~16.5% relative.

Index Terms— multi-dialect, sequence to sequence, adaptation

1. INTRODUCTION

Dialects are defined as variations of the same language, specific to
geographical regions or social groups. Although they share many
similarities, there are usually large differences at several linguistic
levels; amongst others: phonological, grammatical, orthographic
(e.g., “color” vs. “colour”) and very often different vocabularies.
As a result, automatic speech recognition (ASR) systems trained
or tuned for one specific dialect perform poorly when tested on
another dialect of the same language [2]. In addition, systems si-
multaneously trained on many dialects fail to generalize well for
each individual dialect [3]. Inevitably, multi-dialect languages pose
a challenge to ASR systems. If enough data exists for each dialect, a
common practice is to treat each dialect independently [2, 4, 5]. Al-
ternatively, in cases where dialects are resource-scarce, these models
are boosted with data from other dialects [3, 6]. In the past, there
have been many attempts to build multi-dialect/language systems.
The usual approach has been to define a common set of universal
phone models [7–9] with appropriate parameter sharing [6] and
train it on data from many languages with eventual adaptation on
the data from the language of interest [10–13]. [11, 14] developed
similar neural network models with language independent feature
extraction and language dependent phonetic classifiers. [12] further
investigated a grapheme-based multi-dialect model with dialect-
dependent phoneme recognition as secondary tasks. Adaptation

techniques such as MLLR and MAP are commonly used for Gaus-
sian mixture model based systems [13]; but for neural network
based models, adaptation by continued training on dialect-specific
data works well [12].

We believe it has been challenging to build a universal multi-
dialect model for conventional ASR systems because these models
still require a separate pronunciation and language model (PM and
LM) per dialect, which are trained independently from the multi-
dialect acoustic model (AM). Therefore, if the AM predicts an in-
correct set of sub-word units from the wrong dialect, errors get prop-
agated to the PM and LM.

Sequence-to-sequence models provide a simple and elegant so-
lution to the ASR problem by learning and optimizing a single neural
network for the AM, PM and LM [15–21]. We believe such a model
is very attractive to look at for building a single multi-dialect sys-
tem specifically for this reason. Training a multi-dialect sequence-
to-sequence model is simple, as it requires simply pooling all the
grapheme symbols together. In addition, the AM, PM and LM vari-
ations are jointly modeled across dialects [22]. Different from [23],
no explicit LM is used. The simplicity and joint optimization make
it a good candidate for training multi-dialect systems.

In this work, we adopt the attention-based sequence-to-sequence
model, namely listen, attend and spell (LAS) [1], for multi-dialect
modeling. It has shown good performance compared to other
sequence-to-sequence models for single dialect tasks [21]. Our
goal here is to build a single LAS model for seven English dialects.
We start by simply pooling all the data together. For English the
grapheme set is shared across dialects, nothing needs to be modified
for the output. Although this model gives acceptable performance
on each dialect, it falls behind the ones independently fine-tuned on
each dialect.

In the literature, adaptation methods [24, 25] are typically used
to integrate dialect-specific information into the system. We hypoth-
esize that by explicitly providing dialect information to the LAS
model we should be able to bridge the gap between the dialect-
independent and dialect-dependent models. Firstly, we use dialect
information in the output by introducing an artificial token into
the grapheme sequence [26]. The LAS model needs to learn both
grapheme prediction and dialect classification. Secondly, we feed
the dialect information as input vectors to the system. It can be
either used as an extra information vector appended to the inputs
of each layer or as weight coefficients for cluster adaptive training
(CAT) [27]. Our experimental results show that using dialect infor-
mation can elevate the performance of multi-dialect LAS system to
outperform dialect-dependent ones. The proposed system has sev-
eral attractive benefits: 1) simplicity: no changes are required for the
model and scaling to more dialects is trivial - by simply adding more
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data; 2) improvement for low-resource dialects: in the multi-dialect
system, the majority of the parameters are implicitly shared by all
the dialects, which forces the model to generalize across dialects
during training. It is observed that the recognition quality on the low
resource dialect is significantly improved.

2. MULTI-DIALECT LAS MODEL

The LAS [1] model consists of an encoder (akin to an acoustic
model), a decoder (like a language model) and an attention model
which learns an alignment between the encoder and decoder outputs.
The encoder is normally a stack of recurrent layers; in this study we
use 5 layers of unidirectional long short term memory (LSTM) [28].
The decoder is a neural language model, consisting of 2 LSTM lay-
ers. The attention module takes in the decoder’s lowest layer’s state
vector from the previous time step and estimates attention weights
for each frame in the encoder output in order to compute a single
context vector. The context vector is then input into the decoder
network, along with the previously predicted label from the decoder
to generate logits from the final layer in the decoder. Finally, these
logits are input into a softmax layer, which outputs a probability
distribution over the label inventory (i.e., graphemes), conditioned
on all previous predictions. In conventional LAS models, the label
inventory is augmented with two special symbols, <sos>, which is
input to the decoder at the first time-step, and <eos>, which indi-
cates the end of a sentence. During inference, the label prediction
process terminates when the <eos> label is generated.

The baseline multi-dialect LAS system is built by simply pool-
ing all the data together. The output targets consist of 75 graphemes
for English, which are shared across dialects. In the following sec-
tion, we describe how we can improve the baseline multi-dialect
LAS model by providing dialect information. We assume this in-
formation is known in advance or can be easily obtained [5]. We
believe explicitly providing such dialect information would be help-
ful to improve the performance of the multi-dialect LAS model. We
discuss three ways of passing the dialect information into the LAS
model, namely feeding it as output targets, as input vectors, or di-
rectly factoring the encoder layers based on the dialect.

2.1. Dialect Information as Output Targets

A common way to make the model aware of the dialect is through
multi-task learning [29]. We can add an extra dialect classification
cost to the training and regularize the model to learn hidden represen-
tations that are effective for both dialect classification and grapheme
prediction. However, this requires having two separate objective
functions that are weighted, and deciding the optimal weight for each
task is a parameter that needs to be swept [29].

A simpler approach, similar to [26], is to expand the label in-
ventory of our LAS model to include a list of special symbols, each
corresponding to a dialect. For example, when including the British
English, we add the symbol <en-gb> into the label inventory. In
[26], the special symbol is added to the beginning of the target la-
bel sequence. For example, for a British accented speech utterance
of “hello world”, the conventional LAS model uses “<sos> h e
l l o w o r l d <eos>” as the output targets; in the new
setup the output target is “<sos> <en-gb> h e l l o w
o r l d <eos>”. The model needs to figure out which dialect
the input speech is first before making any grapheme prediction.

In LAS, each label prediction is dependent on the history.
Adding the dialect symbol at the beginning, we implicitly incur the
dependency of the grapheme prediction on the dialect classification.

When the model makes errors in dialect classification, it may hurt
the grapheme recognition performance. In this study, we assume the
correct dialect information is always available. Hence, we explore
inserting the dialect symbol at the end of the label sequence as well.
For the example utterance, the target sequence now become “<sos>
h e l l o w o r l d <en-gb> <eos>”. By inserting
the dialect symbol at the end, the model still needs to learn a shared
representation but avoids the unnecessary dependency and is less
sensitive to dialect classification errors.

2.2. Dialect Information as Input Vectors

Another way of providing dialect information is to pass this informa-
tion as an additional feature [30]. To convert the categorical dialect
information into a real-valued feature vector, we investigate the use
of 1-hot vectors, whose values are all ‘0’ except for one ‘1’ at the in-
dex corresponding to the given dialect, and data-driven embedding
vectors whose values are learned during training. These dialect vec-
tors can be appended to different layers in the LAS model. At each
layer the dialect vectors are linearly transformed by the weight ma-
trices and added to the original hidden activations before the nonlin-
earity. This effectively enables the model to learn dialect-dependent
biases. We are mainly interested in two configurations: 1) adding it
to the encoder layers, which effectively provides dialect information
to help model the acoustic variations across dialects; and 2) append-
ing it to the decoder layers, which models dialect-specific language
model variations. Ultimately, we can also combine the two by feed-
ing dialect vectors into both the encoder and the decoder.

2.3. Dialect Information as Cluster Coefficients

Another approach to modeling variations in the speech signal (for
example dialects) which has been explored for conventional models
is cluster adaptive training (CAT) [27]. We can treat each dialect as
a separate cluster and use 1-hot dialect vectors to switch clusters;
alternatively, we can use data-driven dialect embedding vectors as
weights to combine clusters. A drawback of the CAT approach is
that it adds extra network layers, which typically adds more param-
eters to the LAS model. In this study, our goal is to maintain sim-
plicity of the LAS model and limit the increase in model parameters.
Thus, we only tested a simple CAT setup for the encoder of the LAS
model to compare with the input vector approaches discussed in the
previous sections. Specifically, we use a few clusters to compensate
activation offsets of the 4th LSTM layer based on the shared repre-
sentation learned by the 1st LSTM layer, to account for the dialect
differences. For each cluster, a single layer 128D LSTM is used with
output projection to match the dimension of the 4th LSTM layer. The
weighted sum of all the CAT bases using dialect vectors as interpo-
lation weights is added back to the 4th LSTM layer’s outputs, which
are then fed to the last encoder layer.

3. EXPERIMENTAL DETAILS

Our experiments are conducted on about 40K hours of noisy train-
ing data consisting of 35M English utterances. The training utter-
ances are anonymized and hand-transcribed, and are representative
of Google’s voice search traffic. It includes speech from 7 differ-
ent dialects, namely America (US), India (IN), Britain (GB), South
Africa (ZA), Australia (AU), Nigeria & Ghana (NG) and Kenya
(KE). The amount of dialect-specific data can be found in Table 1.
The training data is created by artificially corrupting clean utterances
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using a room simulator, adding varying degrees of noise and rever-
beration such that the overall SNR is between 0 and 20dB [31]. The
noise sources are from YouTube and daily life noisy environmen-
tal recordings. We report results on dialect-specific test sets, each
contains roughly 10K anonymized, hand-transcribed utterances from
Google’s voice search traffic without overlapping with the training
data. This amounts to roughly 11 hours of test data per dialect. All
experiments use 80-dimensional log-mel features, computed with a
25ms window and shifted every 10ms. Similar to [32, 33], at the
current frame, t, these features are stacked with 3 frames to the left
and downsampled to a 30ms frame rate. In the baseline LAS model,
the encoder network architecture consists of 5 unidirectional 1024D
LSTM [28] layers. Additive attention [1] is used for all experiments.
The decoder network is a 2-layer 1024D unidirectional LSTM. All
networks are trained to predict graphemes, which have 75 symbols
in total. The model has a total number of 60.6M parameters. All
networks are trained with the cross-entropy criterion, using asyn-
chronous stochastic gradient descent (ASGD) optimization [34], in
TensorFlow [35]. The training terminates when the change of WERs
on a dev set is less than a given threshold for certain number of steps.

Table 1: Number of utterances per dialect for training (M for mil-
lion) and testing (K for thousand).

Dialect US IN GB ZA AU NG KE

Train(M) 13.7 8.6 4.8 2.4 2.4 2.1 1.4

Test(K) 12.9 14.5 11.1 11.7 11.7 9.8 9.2

4. RESULTS

4.1. Pooling All Data

Firstly, we build a single grapheme LAS model on all the data to-
gether (S1 in Table 2). For comparison, we also build a set of dialect-
dependent models. Due to the large variations in the amount of data
we have for each dialect, a lot of tuning is required to find the best
model setup from scratch for each dialect. For the sake of simplicity,
we take the joint model as the starting point and retraining the same
architecture for each dialect independently (S2 in Table 2). Instead
of updating only the output layers [11, 14], we find reestimating all
the parameters work better. To compensate for the extra training
time the fine-tuning brings in, we also keep the baseline model train-
ing for similar extra number of steps; we do not find to improve
the WER. Comparing the dialect-independent model (S1) with the
dialect-dependent ones (S2), simply pooling the data together gives
acceptable recognition performance, but having a language-specific
model by fine-tuning still achieves better performance.

Table 2: WER (%) of dialect-independent (S1) and dialect-
dependent (S2) LAS models.

Dialect US IN GB ZA AU NG KE

S1 10.6 18.3 12.9 12.7 12.8 33.4 19.2

S2 9.7 16.2 12.7 11.0 12.1 33.4 19.0

4.2. Using Dialect-Specific Information

Our next set of experiments look at using dialect information to see
if we can have a joint multi-dialect model improve performance over
the dialect-specific models (S2) in Table 2.

4.2.1. Results using Dialect Information as Output Targets

We first add the dialect information into the target sequence. Two
setups are explored, namely adding at the beginning (S3) and adding
at the end (S4). The results are presented in Table 3. Inserting the
dialect symbol at the end of the label sequence is much better than
at the beginning, which eliminates the dependency of grapheme pre-
diction on the erroneous dialect classification. S4 is more preferable
and outperforms the dialect-dependent model (S2) on all the dialects
except for IN and ZA.

Table 3: WER (%) of inserting dialect information at the beginning
(S3) or at the end (S4) of the grapheme sequence.

Dialect US IN GB ZA AU NG KE

S2 9.7 16.2 12.7 11.0 12.1 33.4 19.0

S3 9.9 16.6 12.3 11.6 12.2 33.6 18.7
S4 9.4 16.5 11.6 11.0 11.9 32.0 17.9

4.2.2. Results using Dialect Information as Input Vectors

Table 4: WER (%) of feeding the dialect information into the LAS
model’s encoder (S5), decoder (S6) and both (S7). The dialect in-
formation is converted into an 8D vector using either 1-hot represen-
tation (1hot) or learned embedding (emb).

Dialect US IN GB ZA AU NG KE

S2 9.7 16.2 12.7 11.0 12.1 33.4 19.0

S5(1hot) 9.6 16.4 11.8 10.6 10.7 31.6 18.1
S5(emb) 9.6 16.7 12.0 10.6 10.8 32.5 18.5

S6(1hot) 9.4 16.2 11.3 10.8 10.9 32.8 18.0
S6(emb) 9.4 16.2 11.2 10.6 11.1 32.9 18.0

S7(1hot) 9.1 15.7 11.5 10.0 10.1 31.3 17.4

Next we experiment with directly feeding the dialect informa-
tion into different layers of the LAS model. The dialect information
is converted into an 8D vector using either 1-hot representation or
an embedding vector learned during training. This vector is then ap-
pended to both the inputs and hidden activations. We compare the
usefulness of this dialect vector to the LAS encoder and decoder.
From Table 4, feeding it to encoder (S5) gives gains on dialects with
less data (namely GB, ZA, AU, NG and KE) and has comparable
performance on US, but is still a bit worse on IN compared to the
fine-tuned dialect-dependent models (S2). Similarly, we pass the
dialect vector (using both 1-hot and learned embedding) to the de-
coder of LAS (S6). Table 4 shows that in this way the single multi-
dialect LAS model outperforms the individually fine-tuned dialect-
dependent models on all dialects except for IN, for which it obtains
the same performance.

Comparing the use of 1-hot representation and learned embed-
ding, we do not observe big differences for both the encoder and
decoder. It is most likely the small dimensionality of the vectors
used (i.e. 8D) that is insufficient to suggest any preference between
the 1-hot representation and the learned embedding. In future, when
scaling up to more dialects/languages, using embedding vectors in-
stead of 1-hot to represent a larger set of dialects/languages could be
a more economical way.

Feeding dialect vectors into different layers effectively enables
the model to explicitly learn dialect-dependent biases. For the en-
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Fig. 1: Relative WER changes when feeding in wrong dialect vectors
(rows) to the encoder or decoder for each test set (columns). The red
and blue colors indicate the relative increase and decrease of WERs
respectively and the white color means no change in WERs.

coder, these biases would help capture dialect-specific acoustic vari-
ations; while in the decoder, they can potentially address the lan-
guage model variations. Experimental results suggest that these sim-
ple biases indeed help the multi-dialect LAS model. To understand
their effects, we test system S5(1hot) and S6(1hot) with mis-
matched dialect vector on each test set. The relative WER changes
are depicted in Figure 1. Each row represents the dialect vector fed
into the model and each column corresponds to a dialect-specific test
set. The white diagonal blocks are the “correct” setups, where we
feed in the correct dialect vector on each test set. The red and blue
colors represent the relative increase and decrease of WERs respec-
tively. The darker the color is, the larger the change is. Comparing
the effect on encoder and decoder, wrong dialect vectors degrades
more on encoders, suggesting more acoustic variations across di-
alects than language model differences. Across different dialects, IN
seems to have the most distinguishable characteristics. NG and KE,
the two smallest dialects in this study, benefit more from the sharing
of parameters as the performance varies little with different dialect
vectors. This suggests the proposed model is capable of handling the
unbalanced dialect data properly, learning strong dialect-dependent
biases when there’s enough data and sticking to the shared model
otherwise. Another interesting observation is that, for these two di-
alects, feeding dialect vectors from ZA is slightly better than using
their own. This suggests in future pooling similar dialects with less
data may give better performance.

One evidence that the model successfully learns dialect-specific
lexicons is “color” in US vs. “colour” in GB. On the GB test set,
the system without any explicit dialect information (S1) and the one
feeding it only to encoder layers (S5) generate recognition hypothe-
ses with both “color” and “colour” although “color” appears much
less frequently. However, for the model S6, where the dialect in-
formation is directly fed into decoder layers, only “colour” appears;
moreover, if we feed in the dialect vector for US to S6 on the GB
test set, the model successfully switches all the “colour” predictions
to “color”. Similar observations are found for “labor” vs. “labour”,
“center” vs. “centre” etc.

Next, we feed the 1-hot dialect vector into all the layers of the
LAS model (S7). Experimental results (Table 4) show that this sys-
tem outperforms the dialect-dependent models on all the test sets,
with the largest gains on AU (16.5% relative WER reduction).

4.2.3. Results using Information as Cluster Coefficients

In the literature, instead of directly feeding the dialect vector as in-
puts to learn a simple bias, it can also be used as a cluster coeffi-
cient vector to combine multiple clusters and learn more complex
mapping functions. For comparisons, we implement a simple CAT

system (S8) only for the encoder. Experimental results in Table 5
show that unlike directly feeding dialect vectors as inputs, CAT fa-
vors more learned embeddings (S8(emb)), which encourages more
parameter sharing across dialects. In addition, comparing this to
directly using dialect vectors (S5(1hot)) for the encoder, CAT
(S8(emb)) is more effective on US and IN and similar on other
dialects. However, in terms of model size, comparing to the baseline
model (S1), S5(1hot) only increases by 160K parameters, while
S8(emb) adds around 3M extra. We will leave a more thorough
study of CAT for future work.

Table 5: WER (%) of a CAT encoder LAS system (S8) with 1-hot
(1hot) and learned embedding (emb) dialect vector.

Dialect US IN GB ZA AU NG KE

S2 9.7 16.2 12.7 11.0 12.1 33.4 19.0

S5(1hot) 9.6 16.4 11.8 10.6 10.7 31.6 18.1

S8(1hot) 9.9 17.0 12.1 11.0 11.6 32.5 18.3
S8(emb) 9.4 16.1 11.7 10.6 10.6 32.9 18.1

4.3. Combining Adaptation Strategies

Lastly, we integrate the joint dialect identification (S4) and the use
of dialect vectors (S7(1hot)) into a single system (S9). The per-
formance of this combined multi-dialect LAS system is presented
in Table 6. It works much better than doing joint dialect identifi-
cation (S4) alone, but has similar performance to the one uses di-
alect vectors (S7(1hot)). This is because when feeding in dialect
vectors into the LAS model, especially in the decoder layers, the
model is already doing a very good job in predicting the dialect.
Specifically, the dialect prediction error for S9 on the dev set dur-
ing training is less than 0.001% compared to S4’s 5%. Overall, our
best multi-dialect system (S7(1hot)) outperforms dialect-specific
models and achieves 3.1~16.5% WER reductions across dialects.

Table 6: WER (%) of the combined multi-dialect LAS system (S9).

Dialect US IN GB ZA AU NG KE

S2 9.7 16.2 12.7 11.0 12.1 33.4 19.0

S4 9.4 16.5 11.6 11.0 11.9 32.0 17.9
S7(1hot) 9.1 15.7 11.5 10.0 10.1 31.3 17.4

S9 9.1 16.0 11.4 9.9 10.3 31.4 17.5

5. CONCLUSIONS

In this study, we explored a multi-dialect end-to-end LAS system
trained on 7 English dialects. The model utilizes a 1-hot dialect vec-
tor at each layer of the LAS encoder and decoder to learn dialect-
specific biases. It is optimized to predict the grapheme sequence
appended with the dialect name as the last symbol, which effectively
forces the model to learn shared hidden representations that are suit-
able for both grapheme prediction and dialect classification. Experi-
mental results show that feeding a 1-hot dialect vector is very effec-
tive in boosting the performance of a multi-dialect LAS system, and
allows it to outperform a LAS model trained on each individual lan-
guage. Furthermore, we also find that using CAT could potentially
be more powerful in modeling dialect variations though at a cost of
increased parameters, which will be addressed in future work.
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