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Abstract— Block Sparse Bayesian Learning (BSBL) methods
estimate a block sparse vector by maximizing the posterior
distribution and using sparsity-inducing priors. In BSBL works,
all hyperparameters priors are assumed to follow the same
distribution with the same parameters. In this paper, we propose
to assign different parameters to each hyperparameter, giving
more importance to some hyperparameters over others. The
importance weights are obtained by leveraging a low resolution
estimate of the underlying sparse vector, for example, an estimate
obtained via a method that does not encourage sparsity. We refer
to the proposed approach as Weighted Block Sparse Bayesian
Learning (WBSBL). Simulation results show that, as compared
to BSBL, WBSBL achieves substantial improvement in terms of
probability of detection and probability of false alarm in the
low signal to noise ratio regime. Also, WBSBL’s performance
degrades slower than that of BSBL as the number of active
blocks increases.

I. INTRODUCTION

Sparse signal recovery problems arise in many contexts,
including biomedical imaging [1]-[5], and radar [6]-[10].
In such problems, we need to estimate a vector with the
minimum number of active entries that satisfies certain con-
strains. Mathematically, this corresponds to finding the least
£y-norm solution. However, since this is an NP-hard problem
[11], a lower complexity ¢1-norm minimization problem is
solved instead. Conditions under which the ¢; and ¢;-norm
minimization problems are strictly equivalent include the Re-
stricted Isometry Property (RIP) [12], the Null Space Property
(NSP) [13], the Mutual Coherence [14], and the Range Space
Property [15]. Weighted approaches have also been proposed
for sparse signal recovery. In [16], a reweighted ¢;-norm
approach has been proposed for sparsity enhancement of the
recovered vector. Also, a weighted ¢;-norm approach has been
proposed in [2] for the cases in which the dictionary matrix
exhibits high coherence. Probabilistic approaches for sparse
signal recovery have also been proposed, where a Bayesian
posterior is maximized, using sparsity inducing priors. In
Sparse Bayesian Learning (SBL) [17], [18], Gaussian priors
with distinct variances for each entry are used. The variances
are estimated by maximizing the marginal likelihood function.
A weighted version of SBL (WSBL) was proposed in [19]
and shown to improve the performance of SBL under low
SNR scenarios. Bayesian approaches have a global minimum,
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which, unlike /;-norm minimzation based approaches, is the
sparsest solution in noise free scenarios [18].

Block sparse signals constitute an interesting class of signals
in which groups of entries are active simultaneously. In
block sparse signal recovery problems, we seek a solution
with the smallest number of active groups that best describe
the observations vector. Since this is a complex problem, a
relaxation is proposed in [20], where we seek the smallest
sum of group energies. Conditions for equivalence between the
original problem and the relaxed one include the Generalized
RIP condition [20], the Null Space Characterization [21], the
Block Mutual Coherence [22], and the Generalized Range
Space Property [23]. Bayesian approaches have also been
proposed for group sparse probems by generalizing SBL [24],
[24]. As in SBL, the Bayesian approach global minimum is
the sparsest solution in noise free scenarios [24], which is not
the case, in general, for approaches that solve for the smallest
sum of group energies.

Motivated by the good performance of WSBL as compared
to SBL, in this paper, we propose a weighted approach to
recover block sparse signals. The weights are estimated using a
low resolution estimate of the underlying signal. The proposed
approach shows robustness in low SNR scenarios, and its
performance degrades slower than that of BSBL as the number
of active blocks increases.

The paper is organized as follows. Section II provides
some background on BSBL as proposed in [24] and [25].
Section III introduces the proposed WBSBL approach, Section
IV simulation results, while Section VII provides concluding
remarks.

II. OVERVIEW OF BSBL
Consider the following linear system
y =Gx+n, (1)

where G € RM*N with M < N is the dictionary, or sensing
matrix, y € RM*! is the observation vector, n € RM*1 is
the noise vector, and x € RV*! is a block sparse vector to
be estimated. Assume each block x; € R%*! in x follows a
parametrized multivariate Gaussian distribution, i.e.,

(%43 gi, Bi) ~ N(0,9:By), ()

where g; is a non-negative parameter that controls the block
sparsity of x (i.e., g; > 0 for active blocks, and g; = 0 for

ICASSP 2018



non-active blocks), and B; is a positive definite matrix which
describes the correlation between the block entries. Assuming
independence between the blocks, p(x) can be written as
p(x) ~ N(0,%), where ¥y = diag{g:B1,...., gmBm }-
Assuming white Gaussian noise, i.e., n ~ N(0,0%I), the
posterior of x is [25]

p(x;y, 0%, {gi, Bi}hy) = N(py, Ba), 3)
where
p, = Z0G' (o’ T+ GEGT) 7y, €
and )
3= (B +07°GTG) . (5)

Given the parameters o2 and {g;, B;}"™,, the Maximum a
Posteriori (MAP) estimate of x is
X=pu,. (6)

A type II maximum likelihood procedure can be used to
estimate the parameters o2 and {g;,B;}"™; [17], which is

equivalent to minimizing the following cost function [25]:
L(o® {9 Bii)) = logloL+ GRGT |+
y (e’ T+ GE,GT) ty.

Differentiating L w.r.t. g;, o2, and B;, and equating to zero
we get

1 —1yi iy :
gi = ETY[Bz‘ Yt pl ()], i=1,2,...,m, (8)
7
-G T2, GTG
s Iy NIHQJ\Z il I ©)
and o T
1SS+l (e
B, = — Z ﬁ“—x(“x)7 (10)

m .
i=1 gi

respectively, where p! is the i block in g, 2; is the
corresponding " principal diagonal block in X, and d; is
the length of the i™ block. Note that in BSBL, most of giS
tend to be zero, thus resulting in a block sparse estimate.
BSBL is a recursive approach; in each iteration, the parameters
{g:, B}, and o? are estimated, and the g;s that are below
a small threshold (around zero) are excluded in the next
iteration. Given the parameters {g;, B;}™; and 02, i, and ¥
are calculated using (4) and (5), respectively. The algorithm
stops when p, converges.

III. THE PROPOSED APPROACH

In the the proposed approach, we follow the BSBL idea,
except that we consider a; = L as a random variable. Since
we know that «; should be positive, we model «; as a Gamma
distribution with parameters a; and b;, i.e.,

pla) = H Gamma(a;; a;, b;), (11)

i=1
where Gamma(a,a,b) = T'(a)"'b%% te, and T'(a) =
Jo S te"te~'dt is the Gamma function. Using a Type II maxi-
mum likelihood procedure as in BSBL, the cost function to be
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Fig. 1. The values of « in log scale after convergence for the non-weighted
approach. The red lines show the indices of the true active blocks.

minimized, after dropping the irrelevant terms, can be written
as

L(O—za {gia Bz}gl) = 10g|021 + GE()GT‘+

b - 12
y (e’ T+ GEeGT) ™! 42 Z p +2 Z a;log(g;). (12)
i=1 7" i=1
Differentiating w.r.t. g;, o2, and B;, we get
Te[B; (2L + pl (ul)T)] + 20
B (S + gk ()" W)

di + 20,1'

and 02 and B; are as described in (9) and (10), respectively.
Note that the update rule of the weighted approach in (13)
has the parameters a; and b;. One can use these parameters to
give importance to some g;s. The relative importance can be
determined by some rough estimate of the underlying sparse
vector.

Now, suppose we have a weight vector w, which contains
large values corresponding to active x; blocks, and low values
corresponding to non active blocks in x. Let us assign a; = w%
and b; = w;. Assuming that w; # 0, the final update rule for
g; can be written as

_Te[B (L + el () T)T] + 2wy
diJr% .

i (14)
We call the above recursive approach Weighted Block Sparse
Bayesian Learning (WBSBL). In each iteration of WBSBL,
the parameters {g;, B;}, and o are estimated via (13), (10)
and (9), respectively. The o;s that are larger from a predefined
threshold are excluded from the next iteration. Given the
parameters {g;, B;}"™; and o2, pu, and ¥, are calculated
using (4) and (5), respectively. The algorithm stops when .,
converges, or some other criterion is satisfied.

The weight vector used in this approach can be any rough
or blurred estimate of the underlying sparse vector, and all the
entries should be made non-zero to avoid losing potentially im-
portant components in the recovered vector [26]. The threshold
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Fig. 2. The values of « in log scale after convergence for the weighted
approach. The red lines show the indices of the true active blocks.

that is used to exclude small g;s depends on the weights. One
can see from (14) that after convergence of WBSBL, the values
of «;s are bounded between 0 and %ﬂf”i, and the threshold
should belong to this interval. '

In the following, we show through an example, how the
hyperparameters are distributed after convergence for both
BSBL and WBSBL. The dictionary matrix A of size 60 x 120
is constructed by choosing its entries to follow Gaussian
distribution with zero mean and unit variance. The number
of active blocks is set to 6, each with block size of 2. The
non-zero entries of the block sparse vector follow Gaussian
distribution of mean 5 and variance 0.25. The weights that
are used in this example is MUItiple SIgnal Classification
(MUSIC) estimated based on 100 snapshots. The SNR is set
to be 15 dB. Fig. (1) shows the values of a; = és of BSBL
after convergence. It is obvious that the values of ;s that
are associated with active blocks, along with other non-active
blocks, have small values, and are considered in the final
estimation. Also, one can observe large variance among the
values of the non-active blocks of «;s; this makes it difficult
to choose a threshold to distinguish between active and non-
active blocks. Fig. (2) shows the values of a;s in log scale
after convergence for WBSBL. One can see that the active
and non-active blocks have been completely separated, and
only the true active blocks have small values; those blocks
will be considered in the final estimate. Also, in WBSBL,
there is an upper limit on the values of «; that correspond
to non-active blocks with low variance among these «;s. This
behavior makes choosing the threshold easier than in BSBL.

IV. SIMULATION RESULTS

In this section, we provide simulation results for the pro-
posed approach, and compare the performance of WBSBL
and BSBL. Monte Carlo simulations with 1000 trials were
performed. In each trial, a matrix A of size 64 x 120
with Gaussian distributed entries with zero mean and unit

variance was constructed. k£ blocks of size d were randomly
selected as active blocks, and the value of the entries in the
selected blocks were set to follow the Gaussian distribution
with mean 5 and standard deviation 0.25. White Gaussian
noise was added to Ax at various SNR levels. The Receiver
Operating Characteristics (ROC) graph was used to compare
the performance of WBSBL to BSBL. For the cases with more
than one active blocks, successful detection was claimed if all
the active blocks were detected. The weights were constructed
based on the MUSIC estimate [27], constructed using 100
snapshots. The threshold for BSBL was set to 0.001, while
for WBSBL, the threshold was set to 0.75%, where
Wi 1S the smallest non-zero entry in the weighting vector,
i.e., MUSIC.

Fig. 3 shows the ROC curves of MUSIC (green curve),
BSBL (blue curve) and WBSBL (red curve) for SNR=10
and 5, and for & = 3 active blocks of size 2. One can see
that WBSBL improves significantly upon the low resolution
estimate used for constructing the weights. Also, one can see
that both BSBL and WBSBL have comparative performance
in the case of high SNR scenarios. Fig. 4 considers the same
scenario but at SNR = 4, 2, and 0. One can see that the
performance of BSBL drops dramatically under this low SNR,
while WBSBL remains robust. The performance of BSBL,
MUSIC, and WBSBL as function of the number of active
blocks k, with block size of d = 2 is shown in Fig. 5.
One can see that WBSBL degrades slower than BSBL as
the number of active blocks increases. In summary, WBSBL
shows improved performance as compared to BSBL in cases of
low SNR regimes, and with different number of active blocks.

V. CONCLUSIONS

Weighted Block Sparse Bayesian Learning approach has
been proposed, which assigns distinct variance priors to each
block in the block sparse vector, giving some hyperparam-
eters some importance over the others. The importance of
a specific parameter is obtained based on rough estimate of
the underlying block sparse vector. Simulation results have
shown significant improvement in terms of probability of
detection and probability of false alarm, especially at low SNR
scenarios, as compared to BSBL. WBSBL degrades slower as
the number of active block increased, as compared to BSBL.
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