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ABSTRACT

Signal processing is rich in inherently continuous applications,
such as radar, MRI, and source localization, in which sparsity priors
play a key role in obtaining state-of-the-art results. To cope with the
infinite dimensionality and non-convexity of these estimation prob-
lems, they are typically discretized and solved by means of convex
relaxations, e.g., using atomic norms. Although successful, this ap-
proach is not without issues. Discretization often leads to high dimen-
sional, potentially ill-conditioned optimization problems. Moreover,
due to grid mismatch and other coherence issues, a sparse signal in
the continuous domain may no longer be sparse when discretized. Fi-
nally, performance guarantees for atomic norm relaxations hold under
assumptions that may be hard to meet in practice. We address these
issues by directly tackling the continuous problem cast as a sparse
functional optimization program. We prove that these problems have
no duality gap and show that they can be solved efficiently using du-
ality and a stochastic gradient ascent-type algorithm. We illustrate
the performance of this new approach on a line spectral estimation
problem.

Index Terms— Functional optimization, sparsity, strong duality,
line spectral estimation.

1. INTRODUCTION

Signal processing is rich in inherently continuous' problems, such
as spectral or delay estimation, image recovery, source localization,
radar, and array processing [1-3]. These problems are difficult to
tackle directly due to their infinite dimensionality. We therefore rely
on sampling results to show that in some cases operating on the orig-
inal signal or a finite (or countably infinite) representation is (approx-
imately) equivalent. For instance, we can filter bandlimited functions
and process finite rate of innovation or union of subspace signals us-
ing only a discrete set of samples [4—6]. Alternatively, if the functions
lie in a reproducible kernel Hilbert space, we can leverage the repre-
senter theorem to perform computations using finite descriptions, a
technique sometimes known as the “kernel trick” [7].

Still, discrete problems are not necessarily easier problems. In
particular, although discretization leads to finite problems, these
problems often remain underdetermined: for a fine discretization,
the number of parameters to estimate exceeds the number of mea-
surements. Sparsity priors then play an important role in achieving
state-of-the-art results [6, 8, 9]. However, albeit finite dimensional,

IThroughout this work, we use the term “continuous” only in contrast to
“discrete” and not to refer to a smoothness property.
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sparse optimization problems are typically non-convex and in certain
cases, NP-hard [10]. As before, this issue is typically addressed
by solving a tractable nearby problem: the sparsity prior is relaxed
to some atomic norm constraint (e.g., 1 norm) so that the mod-
ified problem is convex. Under certain measurement models and
incoherence conditions, sparse and relaxed problems yield the same
solution [8,9].

Although the discretization/relaxation approach can be effective,
it is not always the case. Sampling theorems are sensitive to the func-
tion class considered and are often asymptotic: results improve as the
discretization becomes finer. This leads to high dimensional statis-
tical problem with potentially poor numerical properties (high con-
dition number). Moreover, discretization can lead to grid mismatch
issues and even loss of sparsity: signals that are sparse in the con-
tinuous domain need not be sparse when discretized. These issues
were recently addressed by the development of a continuous theory
for compressive sensing [11-14]. Moreover, for the particular case of
spectral estimation, it is known that the relaxed problem can be posed
directly without discretizing [15-17]. Still, performance guarantees
for these convex relaxations rely on assumptions that are sometimes
difficult to meet in practice.

We therefore propose to forgo both discretization and relaxation
and directly tackle the sparse functional program. Though we now
combine the infinite dimensionality of functional programming with
the non-convexity of sparsity, this turns out to be a fruitful approach.
In fact, we show that sparse functional optimization problems can be
solved exactly by leveraging duality. To do so, we first formulate a
general sparse functional optimization problem (Sec. 2). Then, we
prove that strong duality holds for these problems under mild condi-
tions (Sec. 3). In other words, if we can solve their dual problems,
we can solve sparse functional problems. Finally, by observing that
the dual problem is a finite convex program, we propose an algo-
rithm based on stochastic gradient ascent to solve sparse functional
optimization problems without explicitly evaluating integrals (Sec. 4)
and illustrate this method in a spectral estimation application (Sec. 5).

Notation: We use lowercase boldface letters for vectors (x),
uppercase boldface letters for matrices (X)), calligraphic letters for
sets (A), and fraktur font for measures (h). In particular, we denote
the Lebesgue measure by m. We use C to denote the set of complex
numbers, R for real numbers, and R for non-negative real numbers.
For a complex number z = a + jb, j = v/—1, we denote its real
part Re[z] = @ and its imaginary part Im[z] = b. We use z” to
denote the conjugate transpose of the complex vector z, |.A| for the
cardinality of A, and supp(X) = {8 € Q| X(8) # 0} for the sup-
port of X : © — C. We define the indicator functionI: Q@ — {0,1}
as I(8 € £) = 1, if B belongs to the event £, and zero otherwise.
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2. PROBLEM FORMULATION
Let (2, B) be a measurable space in which B are the Borel sets of (2,

a compact set of the real line. We define the sparse functional opti-
mization problem as

[ [1x@) 20+ Ax (@] a5

minimize
X€eLy
2 (PD
subject to Hyf/ h(B)X(B)dB|| < w,
Q 2

where y € C™; h : Q — C™ is a vector-valued function whose
elements h; € Lo are linearly independent, measurable functions
fori = 1,...,m; w > 0is a fit parameter; and A > 0 is a regu-
larization parameter that controls shrinkage. Unless noted otherwise,
all integrals are taken with respect to the Lebesgue measure. In this
work, however, we will mostly focus on its reformulation

[ [1x@) 20+ Ax (@] as

minimize
X€eLy
subject to  [ly — ©|3 <w (PT')

ezémmﬂmw

in which ® € C™ is a dummy vector. Although (PI) and (PI) are
equivalent, the dual of (PI") separates across 3 and is therefore easier
to solve (Sec. 4). We therefore refer to them interchangeably, but
derive all of our results for (PI').

We refer to (PI) as a sparse functional problem because it seeks
the functional linear model with smallest support that fits the mea-
surements y. Indeed, observe that the objective of (PI) is the measure
of the support of X: [, I(X(8) # 0)dB = m[supp(X)]. Bear in
mind that although we seek a sparse solution X * in (PI), nowhere do
we assume the true parameter is sparse.

We illustrate the use of (PI) in a line spectral estimation problem,
in which we are given noisy measurements from a superposition of n
complex sinusoids and wish to estimate their frequency, amplitude,
and phase. These measurements can be written in functional form as

1
yi:/ exp(j2mBt;)X°(B)dB +vi, fori=1,...,m, (1)
0

where the t; are the sampling times, v; are zero-mean random
variable representing measurement noise, and X° defines the ac-
tive frequencies. If sources and sensors are ideal, then X°(8) =
> h_qzk0(B — fr), where § denotes the Dirac delta and z, € C
determines the amplitude and phase of the component with fre-
quency fr € [0,1]. Phase noise and modulation errors can be
accounted for by using kernels instead of impulses as in X°(8) =
Shozkk(B — fr) for k(u) = e=**/27% whete o determines
the bandwidth of the kernel. It is ready that the integral in (1) has
the same form as that in the constraint of (PI) with @ = [0, 1]
and h;(B) = exp(j2nft;). Note that the h; take on the values
of complex exponentials with different frequencies 3 but at fixed
times ¢; and are therefore square integrable.

Though useful, (PI) is both infinite dimensional and non-convex.
Even more so, its discrete version is known to be NP-hard [10]. Here,
making the problem discrete turns out to make it intractable. Thus,
we turn to its dual problem. Indeed, the dual of its equivalent prob-
lem (PI') has dimensionality on the order of the number of measure-
ments m. Moreover, we know from duality theory that dual problems
are always convex programs [18]. The dual of (PI') can therefore be
solved efficiently (e.g., using Alg. 1). We defer its derivation and

solution to Sec. 4 and first focus on the strong duality of (PI'), i.e.,
whether its dual problem is even worth solving. Indeed, though semi-
infinite convex programs are often solved using duality [15-17, 19],
(P]) is not convex and is therefore not necessarily strongly dual.

3. STRONG DUALITY OF NON-CONVEX
FUNCTIONAL PROGRAMS

We have argued that the dual problem of (PI') is a finite dimensional
convex program that can be solved efficiently. However, we are ulti-
mately interested in the solution of (PI') and since it is non-convex,
there is no reason to expect that the optimal value of its dual is any-
thing more than a lower bound on the optimal value of (PI') [18].
The question therefore remains as to whether the duality approach is
worth pursing. The main result of this section tackles this limitation
by showing that we can solve (PI') using its dual.

Theorem 1. Suppose that h has no point masses (Dirac deltas) and
that Slater’s condition holds for (PY'). Then, strong duality holds
for (P'), i.e., if P is the optimal value of (P1') and D is the optimal
value of its dual, then P = D.

Theorem 1 states that though (PI') is a non-convex functional
program, it is strongly dual. In Sec. 4, we show that this im-
plies (PI') can be solved exactly and efficiently using duality. A
noteworthy feature of this approach is that it precludes discretization
by tackling (PI') directly. Discretizing (PI") not only results in an
NP-hard problem, but it also leads to large dimensional, potentially
ill-conditioned estimation problems. It is also worth noting that
Theorem 1 is a non-parametric result in the sense that it makes no
assumption on the existence or validity of a true measurement model.
More to the point, it does not assume that y arises from a specific
model for which the true parameter is sparse: it simply provides
an efficient method for solving (PI'). Hence, we can determine the
sparsest linear model that fits y regardless of whether they arise from
sparse linear measurements. This is important because there are ar-
guments for obtaining sparse solutions that are not epistemological,
such as reducing computational or measurement costs.

Before proceeding with the proof of Theorem 1, it is worth noting
that finding a strictly feasible point for (PI') is trivial, so that Slater’s
condition always holds [18].

Proposition 1. There exists a measurable function X* € Ly such
that [, h(B)X*(B)dB = y.

Proof. See extended version in [20]. |
Proof of Thm. 1. This proof relies on a well-known result from per-
turbation theory connecting strong duality to the convexity of the per-

turbation function [21, 22]. Formally, define the perturbed version
of (PI') for some perturbation € € R as

minimize s

X€ELsy
fo(X) <s+e
ly— Ol <w

e=4mmmmm

subject to _
(PD

where fo(X) = [,I(X(8) # 0) + A|X(B)|*dB. Note that we use
the epigraph trick to linearize the objective [18]. Let the perturbation
function P(¢) = s*(epsilon) be the optimal value of (PI) for the
perturbation e. Notice that since (I;I) is equivalent to (PI") for € = 0,
it holds that P(0) = P, the optimal value of the original problem.
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Proposition 2. If (i) (PI') satisfies Slater’s condition and (ii) the per-
turbation function P(e) is convex, then strong duality holds for (PT').

Proof. See, e.g., [21, Cor. 30.2.2] or [23, Thm. 4.1.1]. | |

Condition (i) of Proposition 2 is satisfied by the hypotheses of
Theorem 1. Suffices then to show that the perturbation function is
convex [(ii)], i.e., that for every ¢, €', and 6 € [0, 1],

PlOe+(1—0)] <OP(e)+ (1—-0)P(€). )

We can do so using the following lemma whose proof relies on Lya-
punov’s convexity theorem [24] and can be found in [20]:

Lemma 1. The range of the constraints of (I;I) given by
C={c:3X € Last c= fo(X), [ly— O3 <w,

and © = h(ﬂ)X(ﬁ)dﬁ}. )

Q

is a convex set.

Suppose now that P(¢) and P(¢’) are achieved for the func-
tions X and X, respectively:

fo(X) < P(e)+¢ and fo(X') < P(e') +¢€. 4)

Since X and X' are solutions of (PI), they are (PI')-feasible [satisfy
the second and third constraints of (PI)] and fo(X), fo(X') € C.
From Lemma 1, we can obtain another (PI')-feasible function Xy
such that

fo(Xo) = 0fo(X) + (1 — 0) fo(X"). ®)

Combining (4) and (5) yields
fo(Xe) < OPa(e) + (1 — 0)Po(€') + [fe + (1 — 0)€'] .

Hence, Xy is (PI)-feasible for the perturbation fe + (1 — 0)€’ and
its value is s9 = 0P(e) + (1 — 0)P(¢'). However, optimality of
the perturbation function implies that P [fe + (1 — 0)€'] < sg, giv-
ing (2). Lemma 1 therefore implies the perturbation function of (PI")
is convex [(ii) in Proposition 2], which concludes our proof. | |

4. SOLVING THE DUAL FUNCTIONAL PROBLEM

Having established duality as a fruitful approach to solving the sparse
functional program (PI'), we now derive its dual problem and an al-
gorithm to solve it.

Start by noting that due to the complex-valued equality, the La-
grangian of (PI') actually has three dual variables: v € R, corre-
sponds to the inequality constraint, ur € R™ corresponds to the
real part of the equality constraint, and pt; € R™ corresponds to its
imaginary part. We can however combine these last two into a sin-
gle complex-valued dual variable by noticing that for any z € C™
we have s Re[z] + pt Im[z] = Re [qu] with . = pr + jur.
Hence, the Lagrangian of (PI) is defined as

£(X.@.10) = [ 10X(8) #£0) + NX ()5
+Re [uH ( | mx ()5 - @)} ©

+v[ly - Ol ~u].
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for the dual variables ¢ € C™ and v € R4. Its dual function can
then be written as

d(p,v) = min_L(X,0,pu,v), ™

X€Ly,®
so that the dual problem of (PI) is defined as

maximize
w, v>0

d(p,v) (DI

The minimization in (7) actually has a straightforward solution.
First, split the joint minimization to get

dur) = pin [ F(3.X(8)a8

(8
+minvlly - ©]2 - Re[u” ] — vu,

with F(8,z) = I(z # 0) + Az|*> + Re (1" h(B)z]. Minimizing
over O is a simple quadratic program since v > 0. Its solution can
be written explicitly as

(vlly — ©If — Re[u"©]) = 0= Ou(ps,v) =y + £
&)

Despite its non-convex nature, the minimization over X also has a
closed form because we can separate the optimization across (3.

9
B

Lemma 2. Let F' be defined as in (8). Then,

X€ELy

wf [ Flox@)ds = [ i pGods a0
Q qz€eC
Proof. See [25, Thm. 3A]. |

We can therefore solve individually for each 3

min I(X(8) # 0) + XX (B) + e [ h(5) X (8)] .

which leads to

— (B . | R(B)]” > ar
0, otherwise.

Xa(B, ) = { 1)

Notice that the phase of X is the complement of the phase of ™ h(83),
since this maximizes the magnitude of their product by making it a
purely real number. With (9) and (11) in hand, we can evaluate the
objective of (DI) explicitly to get

2
s
4v

1
d(p,v) =m(S) — E[J.HH/J, —Re [/J,Hy] —vw, (12)

with H = [ h(B)h(8)7df and S = {8 | |u""h(B)|* > 4A}.

Solving (DI) yields the optimal dual variables p* and v”*,
from which we can recover X*, the solution of (PI'), using The-
orem 1. Indeed, the strong duality of (PI') implies that (X*, ®@*) €
argminy g £(X, ®, u*, v*) for the Lagrangian in (6) [18]. Since (9)
and (11) yield unique minimizers for each dual variable pair (p, v),
this is a singleton set and we obtain that

X*(ﬁ) = Xd(/Bap‘*)

for X4 in (11). All that remains is to derive a procedure to solve (DI).



Algorithm 1 Stochastic dual ascent for functional optimization

Ho = 0, Vg = 1
fort=1,...,T
Draw /; uniformly at random from {2

= %Zh(ﬁj)h(ﬁj)Hﬂ (’HHh(ﬁj)

2
:>4A)

1 _
e = He—1— T [m (it H+ M) pe1 +y

2
S (m;b _w>
vy N

s {_;Ahw)H““ |1 R(B)| > 4

Vs =

otherwise

X,(8) = = 3 Xu(B)

el

To do so, we use the fact that the dual function is concave and
perform gradient ascent [18]. Recall that the gradient of d with re-
spect to the dual variables is given by the constraint slacks in (6), i.e.,

1 1 1

Voud = —RNHH - 5yH - E“H (13a)
2113

pd =112 13b

Y% 12 (13b)

where we used (9), (11), and the definition of H from (12).
Though (13a) involves computing an integral to evaluate H, no-
tice that the integrand h is a problem constant. Only the domain &
depends on p. Hence, a closed form for the Gram matrix H could
be obtained for certain applications.

It may happen, however, that explicit expressions for H are
not available or too cumbersome to be useful in practice. In these
cases, we can leverage ideas from stochastic gradient descent and
solve (DI)/(PI') using Alg. 1. This procedure is obtained by approxi-
mating H using Monte Carlo integration, i.e., by drawing a set of 3;
independently and uniformly at random from 2 and taking

H= %Zh(ﬁj)h(ﬁj)Hﬂ (’HHh(BJ')

j=1

2
> 4,\> . (14)

Since Monte Carlo integration yields an unbiased estimator of the in-
tegral, replacing H by H in (13a) gives an unbiased estimator of the
gradient. In fact, Alg. 1 for p = 1 can be interpreted as performing
stochastic gradient ascent on d. For p > 1, it becomes a mini-batch
type algorithm. Hence, typical convergence guarantees can also be
obtained for Alg. 1 [26]. We leave these results for future work.

5. APPLICATION: LINE SPECTRAL ESTIMATION

In this section, we illustrate the previous results in the line spectral
estimation application from Sec. 2. We compare the result of three
methods: MUSIC, atomic norm relaxation, and Alg. 1. In all cases,
we use the methods to identify the support and recover the amplitudes
and phases using least squares. MUSIC is a classical solution to line
spectral estimation based on the eigendecomposition of the empirical
autocorrelation matrix of the measurements y [1]. When the signal
is sampled regularly, MUSIC can be used with a single snapshot—
see [1] for details. It requires that the number n of sinusoids be
known a priori. The second approach uses a convex relaxation to

. 200
1.5 (a) 00 (b)
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=Rt i
= =
= @ 100
: -
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Frequency SNR (dB)
- Ground truth MUSIC — -= (PII) — (PI)

Fig. 1. Line spectral estimation: (a) amplitude estimates (SNR =
10 dB); (b) MSE for different SNRs.

approximate the sparse estimation problem [15, 16]. This relaxation
can be written as the semidefinite program

1
minimize o |yl + %(t +u)
o (PID)
X

. T(u)
subject to [ 2H .

J=0
where T'(a) is a Hermitian Toeplitz matrix with entries from a
and 7 > 0 is a regularization parameter. The support is estimated
from the maxima of a polynomial obtained from x*, the solution
of (PI). Finally, we show results from Alg. 1. Note that though X°
contains atoms (see Sec. 2), X* does not [X € Lo for (PI)]. We in-
stead get a mass accumulation around each active frequency (Fig. 1a).

Take the ¢; in (1) to be integers in [—50, 50] and let the v; € C
be independent zero-mean circular Gaussian random variables with
variance o2. Let X° be a sum of n = 5 Dirac deltas randomly
placed in [0, 1] and with amplitudes ([0.5, 1.5]) and phases ([0, 27])
drawn uniformly at random. For MUSIC, we use the actual number
of spectral lines n. For PII, we take 7 to be the optimal regularizer
from [15], which depends on U?,. For Alg. 1, weuse p = 100, A = 1,
ni = 0.09/(1 4 4k), and w = o3.

The estimation MSE for different levels of noise are shown in
Fig. 1b. In high SNR, all methods have similar performance and cor-
rectly recover the active frequencies, amplitudes, and phases. As
the SNR decreases, MUSIC’s performance degrades considerably,
whereas the MSE of (PI) and (PII) remain comparable. Notice, how-
ever, that the support estimated by the convex relaxation has errors
already in high SNR (Fig. 1a).

6. CONCLUSION

We proposed to tackle continuous problems with sparsity priors di-
rectly by solving a sparse functional optimization problem. To do so,
we showed that this problem has no duality gap and can therefore be
solved through its dual. This allows us to bypass the infinite dimen-
sionality and non-convexity hurdles of the original problem and put
forward a simple algorithm to solve these non-convex functional pro-
grams. We illustrated this method in a line spectral estimation appli-
cation, but foresee that this technique can be applied to a wide variety
of problem. Future works include extending Theorem 1 to problems
involving nonlinear measurement models and improve Alg. 1 using
second-order methods and variance reduction techniques [27].
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