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ABSTRACT

Proximal methods are an important tool in signal processing
applications, where many problems can be characterized by
the minimization of an expression involving a smooth fitting
term and a convex regularization term – for example the clas-
sic `1-Lasso. Such problems can be solved using the relevant
proximal operator. Here we consider the use of proximal op-
erators for the `p-quasinorm where 0 ≤ p ≤ 1. Rather than
seek a closed form solution, we develop an iterative algorithm
using a Majorization-Minimization procedure which results
in an inexact operator. Experiments on image denoising show
that for p ≤ 1 the algorithm is effective in the high-noise sce-
nario, outperforming the Lasso despite the inexactness of the
proximal step.

Index Terms— Proximal Methods, Compressed Sensing,
Sparse Recovery, Majorization-Minimization.

1. INTRODUCTION

Sparse methods have proven to be an effective tool in many
signal processing applications ranging from compressed sens-
ing to image denoising. A common aspect of such problems
is the requirement for solving an optimization problem, usu-
ally involving a smooth fitting term plus a regularization term
which encourages some structure on the solution (typically
sparsity). A popular choice is the `1-norm penalty on the so-
lution which encourages the solution vector to be sparse (i.e.
contain few non-zero entries). The `1-norm acts as a con-
vex surrogate to the “true” sparsity penalty which counts the
number of non-zero entries, making the optimization problem
tractable.

Proximal methods are a class of algorithms which can
solve problems involving non-smooth terms such as `1 reg-
ularization [1]. For the `1-norm, this results in the Itera-
tive Shrinkage and Thresholding Algorithm (ISTA) [2]. Rel-
atively less works have focused on the use of general `p-norm
when p is less than one [3]. However, this case is closer to
the true sparse penalty and may lead to improved results in
sparse problems. A proximal method has been derived for the
special cases p ∈ {0, 12 ,

2
3} [4], which was further developed

to the general case by Chen et al [5]. Reweighted `1 methods
have also been shown to be related to the problem of `p-norm
minimization [6] [7][8].

In this work we develop a simple algorithm for `p regular-
ized problems using a majorization-maximization technique.
By relaxing the need for an exact solution to the proximal
problem, we derive an iterative procedure which results in an
approximate or inexact proximal operator that works well in
practice. Unlike reweighted `1 approaches, our algorithm is
generic and can be used as part of any algorithm requiring the
proximal operator such as (accelerated) proximal gradient or
the Alternating Direction Method of Multipliers (ADMM) [9]
and works for any p ∈ (0, 1).

2. PROXIMAL METHODS

Consider the optimization problem

min
x∈Rn

f(x) + λg(x) (1)

where f : Rn → R is convex and smooth and g : Rn → R
is convex and possibly non-differentiable. Equation (1) rep-
resents a wide class of problems found in signal processing
and machine learning. Generally, f is taken to be a smooth
fitting term (for example the Euclidean distance) which pe-
nalizes the difference between the estimated signal and the
desired signal. The second function g often assumes the role
of a regularizer which promotes some desired structure in the
solution. A common choice for g is the `2-norm which pe-
nalizes large values in the solution x?, or the `1-norm which
promotes sparsity. The problem of estimating x? under an `1
penalty is known as the Lasso and has seen widespread use
in areas such as feature selection, denoising and compressed
sensing.

Proximal methods are a class of algorithms for solving
problems with the form specified by (1). Given a convex func-
tion g, the proximal operator associated with g is

proxλg(x) , argmin
u∈Rn

{ 1

2
‖u− x‖22 + λg(u)

}
. (2)

The theory of proximal operators includes projection opera-
tors onto convex sets and can deal with a wide range of regu-
larization terms.

We are interested in proximal operators for the so-called
`p-norms, which include the Lasso as a special case (p = 1):

g(x) = ‖x‖p =
( n∑
i=1

|xi|p
) 1

p

. (3)
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Fig. 1. The `p penalty for several values of p (left) and
their associated approximate shrinkage functions (right). The
dashed line is the exact `1 shrinkage function u(t) =
sign(u(t))

(
|u(t)| − λ

)
.
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Fig. 2. Majorizing auxiliary functions for hλp,x with p = 1
(left), p = 0.6 (middle) and p = 0.2 (right). The black line is
the graph of hλp,x for x = 1.2 and λ = 1.5.

Generally, the `p-norm is only defined for p ≥ 1. Since it
is easier to work without the fraction in the exponent, in the
following we take ‖x‖p to mean (3) raised to the p-th power.
For p ≥ 1 the `p-norm will be convex (see for example the
left panel of Fig. 1, black line). Given the proximal operator
proxλg( · ) for g, the problem given by equation (1) can be
solved using proximal gradient descent via the iteration

x(t+1) := proxλg
(
x(t) − ηt∇fx(t)

)
(4)

which for g( · ) = ‖·‖p and p = 1 results in the widely used
Iterative Shrinkage and Thresholding algorithm.

3. AN INEXACT PROXIMAL OPERATOR

The `1-norm is the tightest convex approximation to the
“true” sparsity penalty which counts the number of non-zero
entries in a vector and for this reason there exist many algo-
rithms for `1 minimization. For 0 ≤ p ≤ 1 the function ‖·‖p
fails to be a norm, instead defining a quasinorm. In this case
‖·‖p is no longer convex (see left panel in Fig. 1). However,
for 0 ≤ p ≤ 1 the corresponding p-quasinorm is a closer
approximation to the true sparsity penalty.

In this section we propose a method of approximating the
solution to (6) in the 0 ≤ p ≤ 1 case using a Majorization-
Minimization (MM) scheme. We first define a function hλp,x :
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Fig. 3. Difference function F = Gλp,x − hλp,x (see Proposition
3.1). Here F obtains its minima at u = ±θ = ±0.75 (dashed
lines).

R→ R
hλp,x(u) ,

1

2
(u− x)2 + λ|u|p. (5)

Then since ‖·‖p is separable,

x? = proxλ‖·‖p(x) ⇐⇒ ∀i, x?i = argmin
u∈R

hλp,xi
(u)

(6)
and in order to solve the proximal problem (2), we seek the
minimizers of hλp,xi

for i = 1, . . . , n.

3.1. Optimization via Auxiliary Functions

Given a function h : R → R to be minimized, a majorizing
auxiliary function G : R× R→ R is such that

• h(u) = G(u, u) ∀u ∈ R

• h(u) ≤ G(u, θ) ∀u ∈ R, ∀θ ∈ R.

The idea behind the MM scheme is that minimization of h
can be replaced with iterative minization of G via

u(t+1) := argmin
u

G(u, u(t)). (7)

The two conditions above then guarantee a monotone se-
quence h so long as G(u(t+1), u(t)) ≤ G(u(t), u(t)).

For the `p-quasinorm proximal operator, we define the
following function Gλp,x : R× R→ R

Gλp,x(u, θ) ,
1

2

(
(u− x)2 + λp| θ |p−2(u− θ)2

)
+

λ
(
sign(θ)pu | θ |p−1 − (p− 1)| θ |p

)
.

(8)

Proposition 3.1. For fixed x ∈ Rn, 0 ≤ p ≤ 1 and λ ≥ 0,
the function Gλp,x(u, θ) defined by (8) is a majorizing auxiliary
function for hλp,x(u).

Proof. The first condition follows by substituting θ = u in
(8) and using the fact that sign(u)u = |u|.
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For the second condition, let F(u, θ) : R×R→ R be the
function given by the difference

F(u, θ) , Gλp,x(u, θ) − hλp,x(u). (9)

First note that F is symmetric in u and θ, i.e.

F(u, θ) = F(−u, θ) = F(u,−θ), (10)

so without loss of generality we can work in the positive half-
plane u ∈ (0,+∞) by replacing x with |x|. For positive θ
and u we have

∂F(u, θ)
∂u

=
1

2
λ(p− 2)p|u|p−3(θ − u)(θ + u) (11)

and since 0 ≤ p ≤ 1, the factor (p − 2) is negative and the
overall quantity is positive or negative depending on the sign
of the factor (θ − u). In general:

|u| ∈
(
0, |θ|

)
=⇒ ∂F(u, θ)

∂u
< 0,

|u| ∈
(
|θ|,+∞

)
=⇒ ∂F(u, θ)

∂u
> 0,

u = θ =⇒ ∂F(u, θ)
∂u

= 0.

(12)

Therefore on (0,+∞) × R and (−∞, 0) × R, the function
F(u, θ) is convex and equals zero at its minimum. Further-
more, F(u, θ) is symmetric in u about 0 for all θ ∈ R.

Having determined Gλp,x we can define an MM scheme
by iteratively solving u? = argminθ Gλp,x(u, θ) and setting
θ = u?. Equating the derivative ∂θ Gλp,x(u, θ) with zero, we
can find the solution θ? which globally minimizes Gλp,x(u, θ)
and hence hλp,x(u) ≥ hλp,x(θ

?). For x ∈ Rn and 0 ≤ p ≤ 1
this gives a non-linear shrinkage function

u :=
xθ2

pλ|θ|p + θ2
(13)

Applying (13) iteratively will monotonically decrease the ob-
jective (5). Additionally, we need to check the value of the
objective function at the extremal point u = 0. Comparing
h(u) and h(0), we find that

h(u) < h(0) ⇐⇒ u
(
u− 2x

)
+ 2λ|u|p < 0. (14)

Putting all of this together, we define an inexact or approxi-
mate `p-quasinorm proximal operator:[

aproxλ‖·‖0≤p≤1
(x)
]
i=1,...,n

:=

{
u?i if u?i

(
u?i − 2xi

)
+ 2λ|u?i |p < 0

0 otherwise

(15)

where u?i is found by iterating (13). The number of iterations
used to find u? can be adjusted to balance accuracy and speed.

Algorithm 1 describes the full proximal operator calculation,
while algorithm 2 demonstrates the use of the operator as part
of a proximal gradient procedure to minimize a smooth func-
tion with `p-quasinorm regularization. The right panel of Fig
1 shows plots of the shrinkage function (13) after several iter-
ations for different values of p.

Initial numerical experiments in compressed sensing
showed that using the proposed approach with small p val-
ues alleviates the bias towards zero seen in `1 sparse coding.
The choice of p introduces a tradeoff between identifiabil-
ity and bias; smaller values result in less shrinkage of the
coefficients, while larger values are better able to recover
small signal values. The following result provides a bound in
terms of p and λ below which signal components cannot be
recovered using `p-minimization.

Proposition 3.2 (Identifiability). Let λ > 0 and 0 ≤ p ≤ 1
be fixed. A necessary condition for exact recovery of x? ∈ Rn
is that for all i ∈ {j : x?j 6= 0} in its support

|x?i | ≥ λpκ
p−1
2−p + κ

1
2−p + λ[∇fx? ]i (16)

where κ := λp(1− p) .

Proof. A solution x of (1) satisfies

x = aproxλ‖·‖0≤p≤1

(
x− λ∇fx

)
(17)

and each x must be either a fixed point of hλp,x or else have
u = 0 (note that u = 0 is not a fixed point in general). For
x > 0, fixed points of hλp,x occur at the solution to

d

du
hλp,x(u) = λpup−1 + u− x = 0. (18)

This derivative is anti-symmetric and convex (resp. concave)
for u > 0 (resp. u < 0). The minimum of this function is
achieved at

argmin
u>0

{
d

du
hλp,x(u)

}
=
(
λp(1− p)

) 1
2−p = κ

1
2−p . (19)

Substituting (19) into (18) gives

λpκ
p−1
2−p + κ

1
2−p − x (20)

and this function has zero-values if and only if

x ≥ λpκ
p−1
2−p + κ

1
2−p . (21)

Therefore, if condition (21) is not met for x > 0 then hλp,x
has no fixed points. The inequality in (16) follows by taking
x = x?i − λ[∇fx? ]i. By symmetry, a similar argument holds
for x < 0. Exact recovery depends on this condition being
met for every component, which completes the proof.
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Algorithm 1 Inexact `p Proximal Operator

Input: Signal x ∈ Rn, λ ≥ 0, p ∈ [0, 1] and iteration count
T > 0.
Initialize u(1)i := 0 for i = 1, . . . , n.
for t = 1 to T − 1

Update each u(t+1)
i according to (13).

end for
for i = 1 to n

Update each u(T )
i according to (15).

end for

Algorithm 2 Inexact `p Proximal Gradient with Linesearch

Input: Objective F = f + λ ‖·‖p, regularizer λ ≥ 0, p ∈
[0, 1], decay term c ∈ (0, 1) and tolerance ε > 0.
Initialize x := 0.
while |F (x(t))− F (x(t+1))| ≥ ε
x̃ := x(t).
while f(x̃) ≤ f(x(t))+∇f>

x(t)(x̃−x(t))+ 1
2λf(x̃−x

(t))

x̃ := aproxλ‖·‖p
(
x(t) − λ∇fx(t)

)
.

λ := cλ.
end while
x(t+1) := x̃.

end while

4. DICTIONARY LEARNING FOR IMAGE
DENOISING

To validate the proposed algorithm, it was tested as part of a
dictionary-based image denoising system. Dictionary learn-
ing has proven an effect method for a variety of image pro-
cessing applications [10][11][12]. Here our goal is not to
present state-of-the-art denoising results, but to (i) validate
the performance of the proposed algorithm and (ii) examine
the effect of p on the denoising results.

Given an input image which has been corrupted by noise,
dictionary learning proceeds by learning a collection of dic-
tionary atoms which can be used to reconstruct the original
signal. First, the input image is divided into a collection of m
patches of size

√
n×
√
n. The dictionary learning problem is

then given by

min
D∈Sn×d,xi=1,...,m

m∑
i=1

‖yi −Dxi‖22 + λ ‖xi‖p (22)

where D ∈ Rn×d is a matrix whose columns consist of indi-
vidual dictionary atoms, Sn×d is the set of all n× d matrices
whose columns live on the unit sphere in Rn and xi=1,...,m are
the sparse coefficients for the m image patches yi=1,...,m (ar-
ranged as column vectors). After learning, each image patch
is reconstructed as Dzi and arranged to recover the full de-
noised image. Since the dictionary learning problem in non-
convex in all of its parameters jointly, we take the standard

p
σ = 0.2 σ = 0.3

MSE PSNR MSE PSNR
Lasso 3.99× 10−2 13.98 7.96× 10−2 10.98

0.7 3.36× 10−2 14.72 7.62× 10−2 11.17

0.4 3.88× 10−2 14.10 7.84× 10−2 11.05

Decay 4.06× 10−2 13.91 8.87× 10−2 10.51

Table 1. Image denoising results for several noise and p-
values.

alternating update approach; for the sparse coding step, we
use the inexact proximal gradient algorithm (2) to recover xi
for each i ∈ {1, . . . ,m}. Next, holding the codes fixed, we
update the dictionary ([13])

D(t+1) := PSn×d

(
YX(t)>(X(t)X(t)>)−1) (23)

where PSn×d( · ) : Rn×d → Sn×d projects the columns of its
argument into Sn×d. This process is then iterated until con-
vergence. For the input signal we used the Barbara test image
corrupted with varying amounts of Gaussian noise with vari-
ance σ ∈ {0.2, 0.3} and a patch size of 8× 8. The dictionary
size was set to 256 atoms, initialized with exemplars from the
training set. We used p ∈ {0.4, 0.7} as well as the Lasso
(p = 1), which was solved using ISTA. Additionally, we test
a continuation strategy where p was initialized to 1 and de-
cayed at each iteration until a final value of 0.3 (last row in
Table 1).

The results are summarized in Table 1 where we record
the performance in terms of Peak Signal to Noise Ratio
(PSNR) and Mean Squared Error (MSE). We see that values
of p < 1 lead to improved performance, particularly in the
high noise scenario.

5. CONCLUSION

We have presented an algorithm for solving `p-norm regular-
ized problems in signal processing. The proposed approach
is generic, in the sense that it can be used as part of any algo-
rithm requiring the `p proximal operator. We find that values
of p < 1 result in less bias in the solution. The approach was
validated on a small dictionary learning and image denoising
experiment, where we find that tuning the value of p can im-
prove the performance over the `1 case.
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