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ABSTRACT

In order to meet the demands of data-intensive continuous
monitoring in wireless body area network, we address a
structured sparse signal recovery method to exploit both s-
patial and temporal correlations in data using compressive
sensing (CS). Using a simultaneously low-rank and joint-
sparse (L&S) signal model, we employ a Bayesian learning
treatment by incorporating an L&S-inducing prior over the
data and the appropriate hyperpriors over all hyperparame-
ters, resulting in effective reconstruction of the L&S data.
Simulation results suggest that the proposed L&S-bSBL is
superior to the state-of-the-art recovery methods in terms of
computation burden and runtime cost.

Index Terms— Wireless Body Area Network, Bayesian
Learning, Compressive Sensing, Low-rank and Joint-sparse

1. INTRODUCTION

Telemonitoring electroencephalogram (EEG) /electrocardio-
gram (ECG) data via wireless body area network (WBAN)
[1, 2] is an evolving direction in e-Health. In WBAN, there
are many sensors with limited computational power. They
need to collect and encode data, then send the encoded da-
ta to a fusion center (FC) for decoding whose computational
power is not at a premium. Therefore, new coding techniques
are needed urgently. Compressive Sensing (CS) [1, 2] based
techniques is a good solution to this problem since it requires
a low-complexity encoder and sophisticated decoder.

In recent years, motivated by many source data which
often contain some kinds of structures, people began to use
structured signal model to improve the CS reconstruction
performance and the reconstruction speed [2–5]. [1] assumes
a block structure of the spatial correlated EEG signals in
a transform domain (discrete cosine transform (DCT) or
wavelet) and shows that a block Sparse Bayesian Learning
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(bSBL) algorithm yields good recovery results. [6] intro-
duces a Bayesian message passing algorithm for solving the
multiple measurement vector (MMV) problem when tempo-
ral correlation is present in the amplitudes of the non-zero
signal coefficients. However, most of these works on energy-
efficient data gathering only focus on exploiting either the
spatial structure (i.e., the dependency relationship among
different sources) or the temporal structure of data. The
data in WBAN prevalently has both spatial and temporal
correlations at the same time [7]. Instead of only using low-
rankness [8] to recover the signal, [7] considers the structured
spatial and temporal correlations jointly by assuming the
spatio-temporal correlated data satisfies simultaneous low-
rank and joint-sparse (L&S) structure, and obtains a superior
performance.

In this paper, we propose a bSBL-based algorithm, L&S-
bSBL, that incorporates the L&S-inducing prior over the da-
ta and the appropriate hyperpriors over all hyperparameters
to recover compressed L&S data in WBAN. Specifically, we
formulate our problem and transform it into a block single
measurement vector (SMV) [6] problem. Then the structure
of the covariance matrix of the L&S data is given. The infer-
ence problem is splited into two steps. Firstly, we get initial
values of hyperparameters by assuming the covariance matrix
of the data as a diagonal matrix. Secondly, we get the optimal
reconstructed data by an expectation maximization (EM)-like
algorithm. Simulation results show that L&S-bSBL has su-
perior performances compared with existing algorithms with
the same order of magnitude runtime consumption.

The rest of the paper is organized as follows: In Section
2, we introduce the problem statements. In Section 3, we pro-
vide the Bayesian learning inference for L&S-bSBL. In Sec-
tion 4, we present the experimental results for both synthetic
data and real-world applications. Finally the conclusions of
this work are discussed in Section 5.

Notation: p(A) ∼ N (0,Σ) denotes the elements of A
follows a Gaussian distribution with mean 0 and variance Σ.
|A| denotes the determinant of A. ‖x‖2 denotes the `2 norm
of x. A ⊗ B represents the Kronecker product of the two
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matrices A and B. vec[A] denotes the vectorization of the
matrix A formed by stacking its columns into a single column
vector. A> denotes the transpose of A. tr(A) denotes the
trace of A.

2. PROBLEM FORMULATION AND SIGNAL
MODEL

We consider a typical WBAN scenario in which there are
m sensors to collect data F = [f1, · · · , fm]> ∈ Rm×n in
time synchronization, where fi ∈ Rn×1, i ∈ 1, 2, ...,m s-
tands for the data collected by the ith sensor and F is the
spatially and temporally correlated data matrix. Then, F is
encoded by linearly mixing with Ξ ∈ Rp×m and transmitted
to an FC, denoted as Y ∈ Rp×n after superimposed noise
V ∈ Rp×n. Finally, F is decoded in the FC using a CS algo-
rithm. Fortunately, many spatially and temporally correlated
WBAN data (e.g. EEG, ECG data) are highly correlated with
the magnitude and locations of their non-zero elements in s-
parse domain. So we can get an approximately L&S matrix
X ∈ Rm×n from F = ΨX, where Ψ ∈ Rm×m is a sparsi-
fying basis (e.g. DCT matrix or wavelet matrix) [7]. And we
have the formulation:

Y = ΦX + V, (1)

where Φ = ΞΨ. Here, this problem belongs to the multiple
measurement vector (MMV) [6] problem.

Now, we consider a bSBL framework [1] by incorporating
an L&S-inducing prior over the signals and the appropriate
hyperpriors over all hyperparameters to recover X. By trans-
forming the MMV problem to the block single measurement
vector (SMV) [6] problem, we have

y = Ax + v, (2)

where y = vec[Y>] ∈ Rnp×1, A = Φ⊗ In ∈ Rnp×nm.
Here Φ is a known dictionary matrix and In ∈ Rn×n denotes
an n× n identity matrix. x = vec[X>] = [x>1 , · · · ,x>m]> ∈
Rnm×1, xi ∈ Rn×1 is the ith block in x. K nonzero rows
in X means K nonzero blocks in x. Thus, x is block-sparse.
v = vec[V>] ∈ Rnp×1.

We assume the elements vi, i ∈ 1, · · · ,m, of the noise
vector v follow identically and independently distributed
(i.i.d.) Gaussian variables with p(vi) ∼ N (0, λ),∀i. For the
problem in (2), we first define the Gaussian likelihood as

p(y|x;A, λ) ∼ Ny|x(Ax, λI) ∝ exp[− 1

2λ
‖Ax−y‖22], (3)

then it produces the aggregate prior on x given by

p(x; γi, γj ,Bij ,∀i, j) ∼ Nx(0,Σ0) ∝ exp[x>Σ−10 x], (4)

where Bij ∈ Rn×n is a covariance matrix between xi and
xj , i, j = 1, · · · ,m. Σ0 = Γ ⊗ Bij , Γ = Γ0Γ

>
0 . Γ0 =

[γ1, · · · , γm]> is the sparsity pattern vector of X with the
support indicates γi ∈ {0, 1}, i = 1, · · · ,m.

Specifically, we have

Σ0 =


γ1γ1B11 γ1γ2B12 · · · γ1γmB1m

γ2γ1B21 γ2γ2B22 · · · γ2γmB2m

...
...

. . .
...

γmγ1Bm1 γmγ2Bm2 · · · γmγmBmm

 .
(5)

Fig.1 shows an example structure of the covariance matrix
Σ0 of x with m = 4, n = 6. Since x2 = 0 and x4 = 0, the
blocks associated with γ2 and γ4 become zeros. Thus, only
four block matrices are non-zeros with the blocks of γ1γ3B13

and γ3γ1B31 are diagonal block matrices.
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Fig. 1. An example structure of the covariance matrix Σ0 of
x, x = vec[X>], m = 4, n = 6.

3. PROPOSED ALGORITHM

Using the Bayes rule, we have the posterior density of x,
which is also Gaussian,

p(x|y;λ, γi, γj ,Bij ,∀i, j) ∼ Nx(µx,Σx), (6)

where the mean µx and the covariance Σx are given by

µx =
1

λ
ΣxA>y, (7)

Σx = (Σ−10 +
1

λ
A>A)−1

= Σ0 −Σ0A
>(λI + AΣ0A

>)−1AΣ0.
(8)

Given all the hyperparameters λ, γi, γj ,Bij ,∀i, j, the
maximum a posterior (MAP) estimate of x is given by

x̂ = vec[X̂>] , µx = (λΣ−10 + A>A)−1AΣ0

= Σ0A
>(λI + AΣ0A

>)−1y,
(9)

where Σ0 is the block matrix given by (5) with most block
matrices being zeros. Clearly, the sparsity of the blocks of x̂
is described by γiγj ,∀i, j. When γk = 0, the associated kth
block in x̂ becomes zeros.
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In order to obtain the estimation of x from (9), we need to
obtain the hyperparameters firstly. Similar to the bSBL frame-
work [1] which induces the temporal correlation in the prior
density via the covariance matrices Bij , i, j = 1, · · · ,m, to
avoid overfitting, we consider using a common positive defi-
nite matrix B to model all the covariance matrices Bij . Then,
(5) turns into

Σ0 = Γ⊗B, (10)

where

Γ =


γ1γ1 γ1γ2 · · · γ1γm
γ2γ1 γ2γ2 · · · γ2γm

...
...

. . .
...

γmγ1 γmγ2 · · · γmγm

 . (11)

In this regard, we use Bayesian strategy to marginalize
over x and then maximize the resulting likelihood function
with respect to B and Γ, which are obtained from the follow-
ing maximize problem

max
B∈H+,Γ≥0

∫
p(y|x;A, λ)p(x;Γ,B)dx, (12)

which is equivalent to minimizing the cost function

L(Γ,B, λ) = y>Σ
−1
y y + log |Σy|, (13)

where H+ denotes a set of n× n positive definite matrices.

Σy = AΣ0A
> + λI, Σ0 = Γ⊗B. (14)

Here Σy can be interpreted as the covariance of y given Γ
and B.

Let Θ = {Γ,B, λ}, thus (13) becomes

L(Θ) = y>Σ
−1
y y + log |Σy|, (15)

with Σy = AΣ0A
> + λI and Σ0 = Γ ⊗ B. We first treat

x as hidden variables in the expectation maximization (EM)
formulation proceeding and then maximize

Q(Θ) =Ex|y;Θ(pre) [log p(y,x;Θ)]

=Ex|y;Θ(pre) [log p(y|x;λ)]
+ Ex|y;Θ(pre) [log p(x;Γ,B)].

(16)

Here and in the sequel, notation A(pre) denotes the estimated
value of A in the last iteration.

To estimate Γ and B, we assume Γ = diag(γ21 , · · · , γ2m)
where diag(·) denotes a diagonal matrix operator. Notice that
the first term in (16) is unrelated to Γ and B. So, we can
simplify the Q function (16) to

Q(Γ,B) = Ex|y;Θ(pre) [log p(x;Γ,B)], (17)

then we have

Q(Γ,B) ∝− n

2
log(|Γ|)− m

2
log(|B|)

− 1

2
tr[(Γ−1 ⊗B−1)(Σx + µxµ

>
x )].

(18)

Then, we plug µx and Σx into (18). To estimate hyper-
parameters Θ, we get the gradients of (18) over γ2i and B,
respectively, and then we obtain γ(pre)i , i = 1, · · · ,m, and
B(pre). Thus, we will get Γ(pre). Using the same way, we
can get λ(pre). Finally, we get Θ(pre).

In order to get an exact result of Θ, we employ stan-
dard upper bounds for solving (13) which known as a non-
convex optimization problem leading to an EM-like algorith-
m. For the first and second terms of L(Γ,B), we compute
their bounds respectively.

Based on [9], for the first term in (13) we have

y>Σ
−1
y y ≤ 1

λ
‖y −Ax‖22 + x>Σ

−1
0 x, (19)

where equality is obtained when x satisfies (9).
For the second term,

log|Σy| ≡ mlog|B|+ log|λA>A + Σ
−1
0 |

≤ mlog|B|+ tr[B−1∇B−1 ] + C,
(20)

where for the second term log|λA>A + Σ
−1
0 |, we use a first-

order approximation with a bias termC to approximate it with
equality whenever the gradient satisfies

∇B−1 =

m∑
i=1

B−BA>i (AΣ0A
> + λI)−1AiB, (21)

where A = [A1, . . . ,Am] and Ai ∈ Rp×n. Finally using the
upper bounds of (19), (20) and∇B−1 , we have the optimal B
in closed form as

Bopt = argmin
X

tr[B−1(XX> +∇B−1)] +m log |B|

=
1

m
[X̂X̂> +∇B−1 ].

(22)

By starting with B = B(pre) and then iteratively comput-
ing (9), (21), and (22), we then have an estimate for B, and
a corresponding estimate for x given by (9). Here, we refer
to this approach as L&S-bSBL algorithm which is outlined in
Algorithm 1.

4. SIMULATION EXPERIMENTS

In this section, we present both synthetic data and real data re-
sults to compare the performance of the proposed L&S-bSBL
algorithm with prior state-of-art TSBL [10], BARM [11] al-
gorithms.
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Algorithm 1 L&S-bSBL
Input: y,A;
Output: X;

procedure
Initialize
iters = 0, δ = 10−6, max iteration number = 500;
assume Γ = diag(γ21 , · · · , γ2m);
compute Γ,B, λ from (18);
Σ0 ← Γ⊗B;
while ‖X− X̂‖22 ≥ δ do

compute X̂ from (9);
compute∇B−1 from (21);
compute Bopt from (22);
iters = iters+ 1;
if iters ≥ 500 STOP; end if

end while
Get the best Bopt and X.

end procedure

4.1. Synthetic Experiments
Since L&S-bSBL is designed for spatially and temporally
correlated data acquisition in WBAN, by assuming that the
signal matrix satisfies the L&S structure, here we compare
the performance of the algorithms for recovering the L&S
matrices from their noisy linear measurements.

All the experiments consist of 100 independent trials. For
the generation of X, we first generate X0 = MLMR, with
ML ∈ Rm×r and MR ∈ Rr×n (n = 30, m = 50, r is
the rank of X) [12]. Then we randomly generate the source
matrix X with K = r + 1 nonzero rows. In each trial, the
indexes of the sources are randomly chosen.

Fig.2(a) shows that with SNR increasing, the proposed
L&S-bSBL algorithm has a better performance. And we see
that the MSE gaps among these algorithms become bigger.
Fig.2(b) shows that with rank r increasing, L&S-bSBL yields
a better performance. The MSEs of both BARM and TSBL
are almost the same when r = 3.
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Fig. 2. (a) MSE vs SNR. (b) MSE vs rank.

Next, we compare all the algorithms with different dimen-
sion m of data. Fig.3(a) shows that with m increasing, all of
MSEs decrease when the compressive ratio becomes larger.
In these cases, our proposed L&S-bSBL algorithm has a bet-

ter performance. For instance, L&S-bSBL achieves at least
7dB reconstruction gain than the other algorithms and takes
almost the same runtime when m = 50.
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Fig. 3. (a) MSE vs m. (b) Runtime vs m.

4.2. Experiments with Real Data
In real data experiments, we illustrate the potential of our al-
gorithm by considering real-time ECG data compression in
WBAN.

We assume the use of several body sensors to collect the
12-lead ECG data, compress and transmit the results to a FC,
where the 12 signal vectors are recovered by using different
algorithms above. Then, 100 continuous-time trials are run.
In each trial, 12 length-257 contiguous sampled data vectors
from the databases (I011) are used. Thus, the data matrix is a
12×257 matrix. Fig.4 plots the performance of MSE versus
SNR and runtime versus SNR, respectively. From Fig.4(a),
we observe that L&S-bSBL outperforms all the other algo-
rithms in terms of MSE, e.g., at SNR = 25dB, we note that
L&S-bSBL achieves at least 7dB reconstruction gain than the
other algorithms. Fig.4(b) shows that L&S-bSBL almost has
the same runtime with BARM which is shorter than TSBL
when SNR = 20dB.
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Fig. 4. MSE vs SNR and Runtime vs SNR for the recovery of
real ECG data.

5. CONCLUSION

In this paper, we studied joint sparse reconstruction of spatial-
ly and temporally correlated data in WBAN, assuming that
the signal matrix satisfies the L&S model. We proposed an
algorithm based L&S structure to recover data using a bSBL-
based algorithm. The proposed approach presented a better
performance than other two methods through numerical re-
sults.

1Available at http://physionet.org/physiobank/database/incartdb.
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