
PHASESPLIT: A VARIABLE SPLITTING FRAMEWORK FOR PHASE RETRIEVAL

Subhadip Mukherjee, Suprosanna Shit, and Chandra Sekhar Seelamantula

Department of Electrical Engineering, Indian Institute of Science, Bangalore 560012, India
Emails: {subhadipm, suprosannas}@iisc.ac.in, chandra.sekhar@ieee.org

ABSTRACT

We develop two techniques based on alternating minimization and
alternating directions method of multipliers for phase retrieval (PR)
by employing a variable-splitting approach in a maximum likelihood
estimation framework. This leads to an additional equality con-
straint, which is incorporated in the optimization framework using a
quadratic penalty. Both algorithms are iterative, wherein the updates
are computed in closed-form. Experimental results show that: (i)
the proposed techniques converge faster than the state-of-the-art PR
algorithms; (ii) the complexity is comparable to the state of the art;
and (iii) the performance does not depend critically on the choice
of the penalty parameter. We also show how sparsity can be in-
corporated within the variable splitting framework and demonstrate
concrete applications to image reconstruction in frequency-domain
optical-coherence tomography.

Index Terms— Phase retrieval, Sparsity, ADMM, Alternating
Minimization, FDOCT

1. INTRODUCTION

Phase retrieval (PR) is a quadratic inverse problem that arises in
several imaging applications, such as X-ray crystallography [1],
holography [2], microscopy [3], etc. The diffraction pattern of the
object in X-ray crystallography is its Fourier transform, and the
sensors record only its intensity. The phase contains structural in-
formation about the object, but it is not directly available. Thus, it
becomes imperative to recover the phase, starting from the intensity
measurements. The objective of PR is to solve this ill-posed inverse
problem by taking into account priors about the object, such as
non-negativity, compact support, sparsity, etc., or by acquiring over-
sampled measurements. More generally, PR refers to the problem of
reconstruction from quadratic measurements that do not necessarily
correspond to the Fourier intensity.

The early contributions go by the name of Fienup iterations and
Gerchberg-Saxton error reduction algorithms [4–8], which bounce
back-and-forth between the object and the measurement domains,
and incorporate respective priors. There are also non-iterative tech-
niques, which rely on a Hilbert integral relation between the log-
magnitude and phase of the Fourier transform of minimum-phase
signals [9]. The two-dimensional counterpart and exact reconstruc-
tion guarantee was proposed in [10] for digital holography. Recently,
we developed model-based non-iterative PR techniques [11–13].

The problem of PR addressed within the realm of sparsity
[14, 15] received attention because of its wide applicability: Signals
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encountered in a number of applications admit a sparse repre-
sentation in a suitably chosen basis. A greedy local search-based
algorithm for sparse PR, referred to as GESPAR, was proposed
by Schechtman et al. [18]. We developed the sparse Fienup al-
gorithm [16, 17], which is an adaptation of the classical Fienup
algorithm to take sparsity into account. Netrapalli et al. [19] de-
veloped an analytical convergence guarantee for the alternating
minimization framework (Alt. Min.) for PR subject to spectral
initialization, with and without sparsity, referred to as AltMinPR
and SparseAltMinPR, respectively. Vaswani et al. [20] recently
developed an Alt. Min. technique for low-rank matrix recovery
from quadratic measurements of the columns. Other notable sparse
PR techniques include dictionary learning (DOLPHIn) [21], cone
programming [22], generalized message passing [23], majorization-
minimization approach [24], etc. Fogel et al. showed that sparsity
and positivity priors lead to faster convergence [25].

Candès et al. [26, 27] pioneered the PhaseLift framework,
wherein one lifts a vector x to a matrix, thereby linearizing the
quadratic measurements. Reconstruction is achieved by solving
a tractable semi-definite program (SDP). One could consider two
possibilities in this framework: (i) oversampled measurements and
no signal prior; or (ii) incorporation of a signal prior such as spar-
sity [28]. Schechtman et al. [29] employed PhaseLift and imposed
sparsity via the log-det penalty, and demonstrated applications to
sub-wavelength imaging with partially incoherent light. Gradient-
descent approaches for PR without lifting include the Wirtinger
Flow (WF) method [30] and its truncated version (TWF) [31].
These algorithms possess better scalability than lifting and have
convergence guarantees subject to the spectral initialization [19].
Waldspurger et al. proposed PhaseCut [32], where the PR problem
is posed as a non-convex quadratic program and is solved using
block-coordinate-descent with a per-iteration complexity compara-
ble to that of the Gerchberg-Saxton-type algorithms.
Our contribution: We propose a variable-splitting approach for PR,
referred to as PhaseSplit, wherein we express the quadratic mea-
surements in one vector as equivalent bilinear measurements in two
vectors. We develop two algorithms to solve the resulting con-
strained optimization, one based on Alt. Min. and the other based on
alternating directions method of multipliers (ADMM). The Alt. Min.
flavor turns out to be a fixed-point iteration, with the ground-truth
as the fixed-point in the absence of measurement noise. Simulations
show that the proposed algorithms result in a convergence behavior
superior to three state-of-the-art PR techniques, and achieve a recon-
struction accuracy up to machine precision when measurement noise
is absent. One could incorporate sparsity in the PhaseSplit formal-
ism – we demonstrate an application of this for signal reconstruction
in frequency-domain optical-coherence tomography (FDOCT).
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2. THE PHASESPLIT ALGORITHMS

We formulate the PR problem both with and without the sparsity
prior in a variable-splitting framework and develop two reconstruc-
tion algorithms, one based on Alt. Min. and the other on ADMM.

The objective is to estimate a signal x∗ ∈ Rn from noisy
quadratic measurements of the form yi =

∣∣a>i x∗∣∣2+ξi, i = 1 : m,
where {ai} ∈ Rn are known sampling vectors, which may be
random (Gaussian vectors, for instance) or deterministic (Fourier
bases); {ξi} denotes additive noise with ξi

i.i.d.∼ N
(
0, σ2

ξ

)
; and

i = 1 : m is a shorthand notation for i = 1, 2, · · · ,m. The
maximum-likelihood estimate of x∗ is given by

x̂ = argmin
x

1

2

m∑
i=1

(
yi −

∣∣∣a>i x∣∣∣2)2

. (1)

The principal idea in PhaseSplit is to express the quadratic
∣∣a>i x∣∣2

as a bilinear form u>Aiv in two variables u and v, where Ai =
aia

>
i , and recast (1) in the following equivalent form:

(û, v̂) = argmin
u,v

1

2

m∑
i=1

(
yi − u>Aiv

)2
s.t. u = v. (2)

Clearly, (1) and (2) have identical solutions, i.e., û = v̂ = x̂. Both
(1) and (2) are nonconvex optimization problems. The motivation
for coming up with the formulation in (2) is that the cost function is
a convex quadratic in u for a fixed v and vice versa — this makes it
an ideal candidate for Alt.Min. type approaches, as shown later. We
refer to (2) as PhaseSplit.

2.1. PhaseSplit-Alt. Min. (PS-AM) Algorithm

The equality constraint in (2) can be incorporated in the cost function
using a quadratic penalty as follows:

(û, v̂) = argmin
u,v

1

2

m∑
i=1

(
yi − u>Aiv

)2
+
λ

2
‖u− v‖22 , (3)

where λ > 0. If λ becomes arbitrarily large, the solution to (3)
would tend to the solution to (2). The cost function in (3) is a convex
quadratic in u for a fixed v and vice versa, which motivates the use
of an Alt.Min. strategy. The cost in (3), when viewed as a function
of u for a fixed v, can be expressed as

q (u) =
1

2
u>Cvu− dv

>u+ (terms independent of u) ,

whereCv and dv are defined as follows:

Cv = λI+

m∑
i=1

(
a>i v

)2
Ai, dv = λv+

m∑
i=1

(
a>i v

)
yiai. (4)

The optimal u is then given by uopt = C−1
v dv . Considering the

fact that the formulation is symmetric in u and v, we have vopt =
C−1

u du, when the cost is optimized w.r.to v for a fixed u. These
two steps lead to an Alt.Min. strategy with the following updates:

ut+1 = C−1
vt dvt and vt+1 = C−1

ut+1dut+1 . (5)

The initialization for v0 in case of random sampling vectors can be
made following the spectral initialization strategy developed by Ne-
trapalli et al. [19]. This algorithm results in an alternating sequence

Algorithm 1 : PhaseSplit-Alt. Min. algorithm for phase retrieval.
1. Input: Measurements {yi}mi=1, the sampling vectors {ai}mi=1,
maximum number of iterations Niter, the desired number of non-
zeros s in the estimate if the target signal is sparse, and λ.
1. Initialization: Set t = 0 and vt = vmax, the eigenvector
corresponding to the largest eigenvalue of S =

∑m
i=1 yiaia

>
i .

2. For t = 1 : Niter do:

1. ut = C−1
vt−1dvt−1 , whereCv and dv are as in (4),

2. vt = C−1
ut
dut , and

3. Output: the current estimates ut or vt.

of estimates of x∗ of the form {u1,v1,u2,v2, · · · }. The matrix
inversion in (5) can be efficiently performed using the conjugate-
gradient (CG) method, using the current estimate vt as the initializa-
tion in the CG method to obtain ut+1 and so on. As the sequence of
estimates stabilize, progressively less number of CG iterations would
be needed to compute the updates, leading to a substantial reduction
in computation. The steps of the PhaseSplit Alt. Min. scheme are
listed in Algorithm 1.

2.1.1. A Fixed-Point Interpretation of PhaseSplit-Alt. Min.

The symmetry (in u and v) of the update rules in (5) leads to a more
insightful interpretation. Redefining vt = x2t and ut+1 = x2t+1,
for t = 0, 1, 2, · · · , the update rules in (5) can be expressed suc-
cinctly as xt+1 = C−1

xt
dxt . In the absence of noise, we have yi =∣∣a>i x∗∣∣2, leading to du = (λI +

∑m
i=1 yiAi)u = Cx∗u. Con-

sequently, the update rule becomes xt+1 = C−1
xt
Cx∗xt, which can

be interpreted as a fixed-point iteration of the form xt+1 = h
(
xt
)
,

where h(x) = C−1
x Cx∗x, which has the desirable property that x∗

is a fixed-point of h (x). This guarantees that if xt = x∗ for some
t, all subsequent updates produce x∗ as the estimate. Therefore, the
PhaseSplit-Alt.Min. algorithm can be interpreted as a fixed-point it-
erative algorithm having x∗ as its fixed-point in the absence of noise.

2.2. PhaseSplit-ADMM (PS-ADMM) Algorithm

The augmented Lagrangian function defined as

L (u,v,µ) = 1

2

m∑
i=1

[
yi − u>Aiv

]2
+
λ

2
‖u− v‖22+µ

> [u− v] ,

where µ is the Lagrange multiplier corresponding to the equality
constraint in (2), lies at the center of the development of the ADMM
algorithm for solving (2). The resulting algorithm consists of the
following update rules [33]:
ut+1 = argmin

u
L
(
u,vt,µt

)
, vt+1 = argmin

v
L
(
ut+1,v,µt

)
,

and µt+1 = µt + λ
(
ut+1 − vt+1

)
, beginning with appropriate

initializations v0 and µ0. The updates for u and v can be computed
in closed-form. The steps of the PhaseSplit-ADMM procedure are
listed in Algorithm 2.

2.3. Sparse PhaseSplit Algorithms

The PhaseSplit formulation can be adapted to take into account the
case wherex∗ is at most s-sparse in a dictionary Ψ ∈ Rn×n, leading
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Algorithm 2 : PhaseSplit-ADMM for phase retrieval.
1. Input: Measurements {yi}mi=1, the sampling vectors {ai}mi=1,
maximum number of iterations Niter, and λ.
1. Initialization: Set t = 0, initialize vt and µt.
2. For t = 1 : Niter do

1. ut+1 = C−1
vt

(
dvt − µt

)
,

2. vt+1 = C−1
ut+1

(
dut+1 + µt

)
, and

3. µt+1 = µt + λ
(
ut+1 − vt+1

)
.

3. Output: the current estimate ut or vt.

to x∗ = Ψα∗, where ‖α∗‖0 ≤ s � n. Redefining ai as Ψ>ai,
the signal reconstruction problem can be expressed as

x̂ = argmin
x

1

2

m∑
i=1

(
yi −

∣∣∣a>i x∣∣∣2)2

s.t. ‖x‖0 ≤ s. (6)

The sparse counterpart of (2), which we shall refer to as Sparse
PhaseSplit, can then be formulated as follows:

min
u,v

1

2

m∑
i=1

(
yi − u>Aiv

)2
s.t. u = v and ‖u‖0 ≤ s. (7)

The sparse counterparts of PS-AM and PS-ADMM can be readily
obtained by inserting the additional step of obtaining the best s-
sparse approximation of the updates in every iteration given by an
operator Ps: vt ← Ps

(
vt
)
.

3. SIMULATION RESULTS

The performance of PS-AM and PS-ADMM without the sparsity
prior are validated on synthetic signals and compared with three
state-of-the-art PR algorithms: (i) PhaseLift, (ii) TWF, and (iii) Alt-
MinPR. We evaluate the reconstruction performance for both noise-
less and noisy measurements. The effects of the regularization pa-
rameter λ and the oversampling factor m

n
are also studied. Since

the underlying signal is real, the accuracy of recovery is measured in
terms of the global sign-independent reconstruction signal-to-noise

ratio (SNR), defined as SNR = max
α∈{−1,+1}

‖x∗‖2
2

‖α x̂−x∗‖22
, where x̂ is an

estimate of the ground-truth x∗.
First, we consider the task of reconstructing a signal x∗ of di-

mension n = 64, drawn uniformly at random from the surface of
the unit sphere. The sampling vectors ai are drawn independently
from the N (0, I) distribution. The performance evaluation is car-
ried out for four different values of m

n
and the results are shown in

Figure 1. We observe that for all values of m
n

, PS-AM exhibits the
fastest convergence, followed by PS-ADMM. As m

n
increases, the

number of iterations consumed by all algorithms for convergence
reduces. After sufficiently many iterations, the reconstruction SNR
reaches approximately 300 dB, indicating that the ground-truth is
recovered to machine precision. The convergence speed of PS-AM
and PS-ADMM is higher than the competing algorithms for smaller
values of m

n
. For higher oversampling factors, the improvement in

convergence speed over the state-of-the-art diminishes.
Subsequently, we proceed to examine the effect of measure-

ment noise on reconstruction accuracy. The oversampling factor is
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Fig. 1. (Color online) Effect of the oversampling factor m
n

on the
reconstruction. The measurements are noise-free. The PhaseSplit al-
gorithms attain a reconstruction SNR value close to 100 dB or higher
within 20 to 30 iterations.

kept fixed at m
n

= 6 and experiments are conducted for four different
values of the input SNR, defined as SNRin = 1

mσ2
ξ

∑m
i=1

∣∣a>i x∗∣∣4,

where σ2
ξ is the noise variance. The reconstruction SNR values are

averaged over 20 independent noise realizations. We observe from
Figure 2 that PS-AM and PS-ADMM continue to converge faster
than the competing algorithms even in the presence of noise. The
reconstruction SNR varies from 22 to 35 dB, depending on the input
SNR level. PS-AM and PS-ADMM take about 10 iterations to con-
verge to a fairly high value of reconstruction SNR, whereas their best
performing competitor PhaseLift requires approximately 30 to 40 it-
erations. Since PS-AM and PS-ADMM have the same asymptotic
complexity per iteration (O(n3)) as PhaseLift, faster convergence
leads to a substantial reduction in overall computations.

The reconstruction SNR, plotted as a function of λ in Figure 3(a)
indicates that the performance of PS-AM and PS-ADMM does not
depend critically on the choice of λ. The SNR of reconstruction is
above 100 dB, which corresponds to near-accurate estimation, over
a fairly large range of values of λ (nearly 102 to 104). The average
run-times per-iteration for different algorithms shown in Figure 3(b)
with respect to the signal dimension n indicate that PS-AM and PS-
ADMM have better scalability than PhaseLift as n grows. The av-
erage run-times of the proposed algorithms are in the same range as
that of AltMinPR. Scalability with respect to the signal dimension
turns out to be the best for TWF.

The performance of sparse PS-AM is compared with GESPAR
and SparseAltMinPR (cf. Figure 4). The total number of swaps
in GESPAR is taken as 1000. Both SparseAltMinPR and sparse PS-
AM are iterated 100 times. The reconstruction SNR values, averaged
over 20 independent trials, are reported corresponding to m = 4n
and λ = 50, for four different values of the sparsity level ρ = s

n
.

The input SNR value is taken to be 25 dB. The support indices of
the ground-truth are drawn uniformly at random. We observe that
sparse PS-AM far outperforms SparseAltMinPR and yields compet-
itive reconstruction performance as compared with GESPAR.
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Fig. 2. (Color online) Effect of measurement noise corresponding
to an oversampling rate of m

n
= 6. The output SNR values are

averaged over 20 independent trials.
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Fig. 3. (Color online) Effect of λ on the reconstruction SNR, and
the comparison of run-times for m

n
= 6.

4. SPARSE PHASESPLIT AND APPLICATION TO FDOCT

We consider signal reconstruction in FDOCT as an application of
Sparse PhaseSplit. FDOCT is a non-invasive imaging technique
used to obtain structural details of biological specimens. The Fourier
intensity of the interference between the reference and object-arm
signals is recorded by the spectrometer. The phase has to be esti-
mated starting from the intensity measurements in order to recon-
struct the axial backscattering function — we achieve this using
Sparse PhaseSplit. Since the reflected wave exhibits a strong peak
only when there is a significant change of refractive index in the
specimen, the assumption of sparsity is indeed apt.

Since the sampling vectors {ai}mi=1 corresponding to Fourier
modulus measurements are complex, we write

yi =
∣∣∣a>iRex

∗
∣∣∣2 + ∣∣∣a>iImx∗∣∣∣2 + ξi = x

∗>Aix
∗ + ξi,

whereAi = aiRea
>
iRe +aiIma

>
iIm, where Re and Im indicate the real

and imaginary parts, respectively. For complex ai, one has to derive
again the algorithm starting from (7). The derivation will be reported
separately. The performance of PhaseSplit and Sparse PhaseSplit is
shown in Figure 5 for reconstruction of two specimens, namely glass
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Fig. 4. Sparse PhaseSplit vis-à-vis other sparse PR algorithms for
different sparsity levels. Sparse PS-AM performs on par with GES-
PAR for denser signals and slightly better for sparse signals.
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Fig. 5. (Color online) The reconstruction of glass (first row) and
onion-peel (second row) specimens using phasesplit, sparse phases-
plit, and the direct Fourier inversion technique. The sparsity prior
enables suppression of coherent artifacts and background noise.

and onion-peel1. For benchmarking, we show the reconstruction ob-
tained using the standard Fourier inversion technique, which cor-
responds to a zero-phase inversion. We observe that sparsity helps
eliminate the so-called autocorrelation artifacts (which are typical
of the standard inversion method) and also gives better signal-to-
background noise contrast. In the case of the glass specimen, the re-
construction obtained using Sparse PhaseSplit indicates three clear
interfaces, and the background noise is significantly suppressed.

5. CONCLUSIONS

We formulated the problem of phase retrieval in a variable-splitting
framework and developed two algorithms, one based on Alt.Min,
and the other based on ADMM. The advantage of the variable-
splitting approach is that it converts a quadratic expression in one
vector into an equivalent bilinear form in two vectors. It is pos-
sible to incorporate sparsity into PhaseSplit by applying a hard-
thresholding operator that prunes insignificant entries to produce a
sparse estimate. The matrix inversion in the update steps is done effi-
ciently by employing the CG technique. Experimental comparisons
show that the proposed algorithms converge significantly faster than
the state-of-the-art PR algorithms both in the presence and absence
of measurement noise. We also demonstrated successful application
of sparse PhaseSplit to perform signal reconstruction in FDOCT,
which establishes the practical impact of the proposed framework.

1The glass and onion-peel data are courtesy of Prof. Rainer A. Leitgeb,
Medical University of Vienna, Austria.
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