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ABSTRACT

The Bayesian framework and heavy tailed distributions ex-
pressed as continuous Gaussian scale mixtures have been
used intensively in the sparsity context. The Posterior Mean
corresponding iterative algorithms strongly depend on the pa-
rameter selection. We propose a parameter selection strategy
based on the link of the mixing and prior distribution. We
compare it with other parameter selection strategies for three
prior models obtained as particular cases of the Generalized
Hyperbolic distribution and show that the proposed parameter
selection strategy seem to be more suitable for the sparsity
context.

Index Terms— continuous Gaussian scale mixture, pa-
rameter selection, sparsity, Generalized Inverse Gaussian, in-
verse problems

1. INTRODUCTION

In this paper we consider heavy tailed distributions to model
sparse structures. In particular, we focus on such distribu-
tions expressed as continuous Gaussian scale mixtures with
conjugate mixing distributions. This class of distributions
is particularly used in signal processing applications using
a linear model and performing the inversion in a Bayesian
framework. The Normal Inverse Gaussian distribution was
considered in [1], in a denoising application, in [2] and [3].
The Variance-Gamma distribution was considered in [4], in a
radar application, in [5], in [6] and [7] in an audio applica-
tion. Its particular case, the Laplace distribution, was consid-
ered in [8] and [9]. The Student-t distribution was considered
in [10], in a chronobiological application, in [11] and indi-
rectly in [12] in a block-sparse application. In [13], [14] and
[15] those heavy tailed priors are treated as particular cases of
the Generalized Hyperbolic distribution, with the correspond-
ing Generalized Inverse Gaussian distribution as the mixing
distribution. Typically, from the corresponding joint poste-
rior distribution the unknowns of the linear model, together
with the hyperparameters, are estimated via Bayesian point
estimators, like Maximum A Posteriori (MAP) or Posterior
Mean (PM), [15], [12], where the PM is performed via the
variational Bayesian approximation (VBA) or using MCMC
techniques. The corresponding iterative algorithms are very
much alike, with slightly different expressions for the updat-

ing equations corresponding to the model variances (MAP)
or hyperparameters, i.e. the posterior distribution modelling
the variances, (PM and MCMC). In all three cases, the prior
parameters considered for the mixing distribution are present
in the iterative algorithms, therefore the crucial importance
of the parameter selection (p.s.). Moreover, typically those
prior parameters are used for initialization of the iterative al-
gorithm. One p.s. strategy, considering the mixing distribu-
tion, is to use non-informative priors. In this strategy, the
mixing distribution is considered and the parameters are set
such that the mixing distribution is approaching the Jeffreys
prior.

Two other parameters selection strategies are considered,
one accounting for the prior distribution in the p.s. setting
and the second one accounting for both the prior and mixing
distribution, exploiting the link of their first and second order
moments. The reconstruction performances of the three p.
s. strategies for three heavy tailed continuous Gaussian scale
mixtures are compared considering the PM via VBA corre-
sponding iterative algorithms, using as measurement the con-
fusion matrix of the false positives and false negatives with
different degrees of relaxation.

We present quantitative results about the sparsity enforc-
ing of the prior models and the p.s. strategies considered.

2. GENERALIZED HYPERBOLIC PM ALGORITHM

For the linear model,

g = Hf + ε, (1)

the Generalized Hyperbolic prior model is considered, Eq. (2),
via a zero-mean Normal distribution for f j | vfj and the
variance vfj modelled as a Generalized Inverse Gaussian *(
distribution, expressed via the modified Bessel function of
the second degree Kp (·){

p(f j | vfj ) = N (f j | 0, vfj )

p(vfj | γ2, δ2, p) = GIG(vfj | γ2, δ2, p),
(2)

with the corresponding marginal p(f j | γ2, δ2, p) the Gener-
alized Hyperbolic distribution [14]. For p = − 1

2 , the prior
model is the Normal Inverse Gaussian distribution, with zero
location and asymmetry parameters. For δ ↘ 0 and p > 0,
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the prior model corresponds to the Variance Gamma distribu-
tion, with zero location and asymmetry parameters. The cor-
responding mixing distribution is the Gamma G

(
vfj | p,

γ2

2

)
distribution (expressed in terms of shape and rate parame-
ters). In particular, if p = 1 the prior model corresponds to
the Laplace distribution, with zero location parameter and the
corresponding Exponential mixing distribution. For γ ↘ 0
and p < 0, the prior model corresponds to the (two parame-
ters) Student-t distribution. The corresponding mixing distri-
bution is the Inverse Gamma IG

(
vfj | −p, δ

2

2

)
distribution.

Non-stationary noise model, i.e. different variances vεi for
each εi and also different variances vfj for each f j are as-
sumed for the linear model (1). The likelihood, prior and the
variance priors write

p(f | vf ) ∝ det (V f )
− 1

2 exp

{
− 1

2

∥∥∥V − 1
2

f Df
∥∥∥2}

p(vf | γ2f , δ2f , pf ) ∝
∏M
j=1 v

pf−1
fj

exp
{
− 1

2

(
γ2f
∑M
j=1 vfj

+ δ2f
∑M
j=1 v

−1
fj

)}
V f = diag [vf ] ; vf =

[
vf1

. . . vfj . . . vfM
]

p(g | f ,vε) ∝ det (V ε)
− 1

2 exp

{
− 1

2

∥∥∥V − 1
2

ε (g −Hf)
∥∥∥2}

p(vε | γ2ε , δ2ε , pε) ∝
∏N
i=1 v

pε−1
εi exp

{
− 1

2

(
γ2ε
∑N
i=1 vεi

+ δ2ε
∑N
i=1 v

−1
εi

)}
V ε = diag [vε] ; vε = [vε1 . . . vεi . . . vεN ] ,

(3)
The Posterior Mean (PM) estimation is considered via Vari-
ational Bayesian Approximation (VBA). The posterior distri-
bution is first approximated by a separable one,

Posterior ≈ q(f ,vf ,vε) = q1(f)

M∏
j=1

q2j(vfj )

N∏
i=1

q3i(vεi),

(4)
by minimizing the Kullback-Leibleir diveregence. Generally,
the minimization leads to proportionalities between each sep-
arable qi distribution and an exponential with arguments the
expected value of the log posterior distribution with respect
to all other separable distributions, i.e. q/i (see [16]):

qi ∝ exp
{
Eq/i [ln Posterior]

}
. (5)

For q1 (f) a (multivariate) Normal distribution is obtained,
N
(
f
∣∣∣ f̃ , Σ̃) with

Σ̃ =
(
HT Ṽ εH +DT Ṽ fD

)−1
; f̃ = Σ̃HT Ṽ εg (6)

using the notations,

Ṽ f = diag [ṽf ] ; ṽf =
[
. . . ṽfj . . .

]
; ṽfj = Eq2j(vfj )

[
v−1fj

]
(7)

and the similar notations corresponding to Ṽ ε. The propor-
tionality corresponding to q2j

(
vfj
)

writes:

q2j
(
vfj
)
∝ v(pf−

3
2 )

fj
exp

{
−1
2

(
γ2
fvfj +

(
δ2f + rj(f̃)

)
v−1
fj

)}
,

(8)
with

rj(f̃) =
(
Dj f̃

)2
+ Tr

[
DT
j DjΣ̂

]
(9)

and the corresponding distribution for q2j is a GIG distribu-
tion, Eq. (10):

q2j
(
vfj
)

= GIG
(
vfj

∣∣∣∣ γ2f , δ̃2fj , pf − 1

2

)
, δ̃2fj = δ2f+rj(f̃),

(10)
Similary, for q3i (vεi):

q3i (vεi) = GIG
(
vεi

∣∣∣∣ γ2ε , δ̃2εi , pε − 1

2

)
, δ̃2εi = δ2ε + si(f̃),

(11)
with

si(f̃) =
(
gi −Hif̃

)2
+ Tr

[
HT

i HiΣ̂
]

(12)

Via Eq. (7) and (10)

ṽfj = Eq2j(vfj )
[
v−1fj

]
=
γf

δ̃fj

Kpf− 3
2

(
γf δ̃fj

)
Kpf− 1

2

(
γf δ̃fj

) (13)

for j = 1, . . . ,M and with similar expressions for ṽεi , i =
1, . . . , N . The corresponding algorithm, with a GIG mixing
distribution is presented in Algorithm (1).

3. PARAMETER SELECTION

The parameters selection resumes to the choice of the priors
parameters. In this particular context, they are the same as the
parameters corresponding to the mixing distributions. This
particular context, gives the possibility to consider three p.s.
strategies.

3.1. Non informative priors

First one is considering the mixing distribution and selects
the parameters such that non-informative priors, [17], [18],
[19] are modelling the variances, i.e. sets γf , δf , pf such that
GIG(vfj | γ2f , δ2f , pf ) is non-informative. Setting both pa-
rameters close to zero for the NIG and VG, St prior models
the mixing distribution approaches Jeffreys, Table (1), second
row.

3.2. Prior form

The second strategy is considering the prior distribution and
selects the parameters such that the prior is concentrated
around the mean, in order to enforce sparsity. The influence
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Algorithm 1 PM via VBA - General Hyperbolic prior
model, non-stationary errors model
Ensure: INITIALIZATION γf , δf , pf , γε, δε, pε

1: compute ṽ(0)fj via Eq. (13) using δf instead of δ̃fj and then

Ṽ
(0)
fj

via Eq. (7)

2: compute ṽ(0)εi using δε instead of δεi and then Ṽ (0)
fj

3: function VBAGH(γf , δf , pf , γε, δε, pε,M,N,NoIter)
4: for n = 0 to NoIter do
5: compute Σ̃

(n)
and f̃ (n) via Eq. (6)

6: for j = 1 to M do
7: compute r(n+1)

j (f̃) then δ̃(n+1)
fj

via Eq. (10)

8: compute ṽ(n+1)
fj

via Eq. (13)
9: end for

10: compute Ṽ f
(n+1) via Eq.(7)

11: for i = 1 to N do
12: compute s(n+1)

i (f̃) then δ̃(n+1)
εi via Eq. (11)

13: compute ṽ(n+1)
εi

14: end for
15: compute Ṽ ε

(n+1) via Eq. (7)
16: end for

return f̃ (n), Σ̃
(n)

, ṽf (n+1), ṽ(n+1)
ε

17: end function

of each corresponding parameter for three prior models con-
sidered is presented in Fig. (1), and the parameter setting in
Table (1), third row.

NIG (1,0.5)
NIG (1,1)
NIG (1,5)

(a) δ2f influenceNIG

VG (1,0.5)
VG (1,1)
VG (1,5)

(b) γ2f influence VG

St-t (1, 0.5)
St-t (1, 1)
St-t (1, 5)

(c) δ2f influence S

NIG (0.5,1)
NIG (1,1)
NIG (5,1)

(d) γ2f influenceNIG

VG (0.5,1)
VG (1,1)
VG (5,1)

(e) pf influence VG

St-t (0.5, 1)
St-t (1, 1)
St-t (5, 1)

(f) −pf influence S

Fig. 1: Priors behaviour depending on the parameters.

3.3. Link between f j and vfj
The third strategy is based on the link between f j and its cor-
responding variance vfj , which in the sparsity context, dur-
ing iterations, associates small variances vfj for the close to
zero values f j and significant variances for the non close to
zero values of f . Formally, this mechanism is modelled by
Eq. (14),

VarP (f j) = EM
(
vfj
)
, (14)

where P andM denote the prior and the mixing distributions
respectively. This p.s. strategy is expressing the parameters

via the first and second order moments of the mixing distri-
bution ε = VarP (f j) = EM

(
vfj
)

and ω = VarM
(
vfj
)
,

Eq. (15). Imposing a close to zero value for the prior distribu-
tion variance, ε↘ 0, assures a concentration around the zero
mean of the prior distribution and implicitly, via Eq. (14), a
small expected value for the mixing distribution. Therefore,
setting a close to zero variance for the mixing distribution will
impose a sparse-like structure for the variance vf .

δ

γ

Kp+1(γδ)

Kp(γδ)
= ε;

δ2

γ2
Kp+2(γδ)

Kp(γδ)
= ω + ε2. (15)

For the NIG prior model, −p = 1
2 , using, K 3

2
(x) =

K 1
2
(x)
(
1 + 1

x

)
leads to:

γ2 = ω−1, δ2 = ε2ω−1. (16)

For the VG prior model, δ2 ↘ 0 and p > 0, using the asymp-
totic relation for small arguments for modified Bessel func-
tion:

p = ε2ω−1,
γ2

2
= εω−1. (17)

For the St prior model, γ2 ↘ 0 and p < 0, using the asymp-
totic relation for small arguments for modified Bessel func-
tion:

−p = 2 + ε2ω−1,
δ2

2
= ε

(
1 + ε2ω−1

)
(18)

Table (1) presents the parameters corresponding to the three
strategies and the five priors considered.

(
γ2, δ2, p = − 1

2

) (
γ2, δ2 ↘ 0, p > 0

) (
γ2 ↘ 0, δ2, p < 0

)
Mixing — G

(
vfj | p,

γ2

2

)
IG
(
vfj | −p, δ2

2

)
Jeffreys γ2 ↘ 0, δ2 ↘ 0 p↘ 0, γ2 ↘ 0 (J ) −p↘ 0, δ2 ↘ 0 (J )

Prior NIG
(
f j | γ2, δ2

)
VG
(
f j | p, γ2

)
St
(
f j | −p, δ2

)
Form γ2 � 0, δ2 ↘ 0 p� 0, γ2 ↘ 0 −p� 0, δ2 ↘ 0

Link γ2, δ2 via Eq. (16) p, γ2 via Eq. (17) −p, δ2 via Eq. (18)

Table 1: Mixing distribution GIG parameter’s corresponding
to different p.s. strategies.

4. SIMULATION RESULTS

We study the behaviour of the p.s. strategies considered, for
the three sparsity enforcing priors considered. We consider a
biological 1-D application, where the goal is to infer over the
sparse corresponding periodic component vector f , Fig (2a)
of a short time series, Fig (2b) in the presence of noise, g,
Fig (2c). More details about the application and the limita-
tions of classical approaches can be found in [10]. We con-
sider this example for its small dimension, allowing a great
number of simulations, corresponding to different values of
the parameters. For each prior model with parameters corre-
sponding to the three p.s. strategies estimation is obtain via

4706



Algorithm (1). The second row of Fig. (2) shows a compari-
son between f and f̂ , corresponding to the three prior mod-
els, when the Jeffreys prior p.s. is used. For each estimation,

0

1

2

3

8 13 18 23 28

(a) unknown f
0 24 48 72

-5

0

5

(b) g0 =Hf

0 24 48 72

-5

0

5

10

(c) g = g0 + ε

2
 = 0.001

2
 = 0.001

L
0
 = 7

L
1
 = 0.049

FP = 4

FN = 0

(d) f̂ viaNIG

p = 1e+03
2
 = 0.001

L
0
 = 10

L
1
 = 0.21

FP = 7
FN = 0

(e) f̂ via VG

-p = 0.001
2
 = 0.001

L
0
 = 15

L
1
 = 0.2

FP = 12
FN = 0

(f) f̂ via St

Fig. 2: Estimation via NIG, VG and St prior models cor-
responding to Jeffreys prior p.s. strategy for one realisation.
ε corresponds to SNR= 10dB. For all three cases the corre-
sponding parameters are both set to 0.001. τ = 0.005

the L0, L1, False Positive (FP) and False Negative (FN) mea-
sures are considered. The measurements are considered w.r.t.
the strictly sparse corresponding vector f̂ †, obtained via a
threshold τ

f̂†j =

 0, if f̂ j < τ maxj f̂ j

f̂ j , else
(19)

For the NIG prior model for the Jeffreys (J) p.s. strategy,
both parameters have to be set close to zero. We consider
the FP and FN corresponding values for γ2 = 10−k, δ2 =
10−k, k = {0, 0.25, . . . 4}. For the Form (F) p.s. strategy,
first parameter have to be set � 0 and the second one close
to zero. We consider the FP and FN corresponding values
for γ2 = 10k, δ2 = 10−k. For the Link (L) p.s. strategy,
the parameter are set via Eq. (16), with ε and ω set close to
zero. We consider the FP and FN corresponding values for
ε = 10−k, ω = 10−k. The same values are considered for
the corresponding parameters of the VG and St prior models,
using their corresponding equations for the L p.s. strategy,
i.e. (17) and (18) respectively. For measuring the sparsity
enforcement corresponding to each prior model and p.s. strat-
egy, we consider the confusion matrix CM(r) depending on
a relaxation degree r

CM(r) =

{
0, FN + FP ≤ r

1, FN + FP > r
(20)

Figure (3), first row, presents the sum of confusion matri-
ces corresponding to ten realisations of the measurements for
r = 3, CM(3) for the three prior models using the Jeffreys and
Form p.s. strategies. The x-axis depends on γ2 and the y-axis
depends δ2, for the NIG prior model. The x-axis depends
on p and the y-axis depends γ2, for the VG prior model. The
x-axis depends on −p and the y-axis depends δ2, for the St

prior model. The second row of the figure presents the corre-
sponding results for the Link strategy. The x-axis depends on
ε and the y-axis depends ω.
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(d)NIG, Link p.s
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Fig. 3: Sum of ten CM(3) matrices: First row: Form & Jef-
freys p.s. strategies for NIG, VG and St. Second row: Link
p.s. strategy for NIG, VG and St. τ = 0005.
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(c) St, J & F p.s
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(d)NIG, Link p.s
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(f) St, Link p.s

Fig. 4: Sum of ten CM(2) matrices. τ = 0.005.

5. CONLCUSIONS

Simulation results, for different values for the threshold τ
show that the structure of CM is the same in terms of small
CM values. This is also the case when the number of exper-
iments is varied. The relaxation parameter r is compressing
the area of small CM values as r is approaching 0. For r = 0,
the CM measures the exact reconstruction in terms of spar-
sity. To goal of this paper was to compare how much is each
prior model enforcing sparsity and not the exact reconstruc-
tion, which may strongly depend on the particularities of the
applications. We notice that between the three priors consid-
ered the NIG and St models seems to perform much better
for sparsity enforcing. Also, the proposed p.s. strategy, ac-
counting for both the mixing and prior distribution via (14)
seems to work in all cases. Moreover, the Jeffreys prior p.s.
strategy is working for theNIG but it seems not to be adapted
for the St prior model. However, considering the blue regions
from the Form and Jeffreys CM, i.e. the regions with good
sparsity enforcing, they correspond via (16), (17) and (18) to
parameter setting obtained via the Link p.s. strategy.
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