
FAST PROJECTION ONTO THE `∞,1-MIXED NORM BALL USING STEFFENSEN ROOT
SEARCH

Gustavo Chau † Brendt Wohlberg? Paul Rodriguez†

†Electrical Engineering Department, Pontificia Universidad Católica del Perú, Lima, Peru
?Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA

ABSTRACT

Mixed norms that promote structured sparsity have broad appli-
cation in signal processing and machine learning problems. In this
work we present a new algorithm for computing the projection onto
the `∞,1 ball, which has found application in cognitive neuroscience
and classification tasks. This algorithm is based on a Steffensen type
root search technique, with a number of improvements over prior
root search methods for the same problem. First, we theoretically
derive an initial guess for the root search algorithm that helps to re-
duce the number of iterations to be performed. Second, we change
the root search method, and through an analysis of the root search
function, we construct a pruning strategy that significantly reduces
the number of operations. Numerical simulations show that, com-
pared to the state-of-the-art, our algorithm is between 4 and 5 times
faster on average, and of up to 14 times faster for very sparse solu-
tions.

Index Terms— Mixed norms, projection, regularization, root
search methods

1. INTRODUCTION

Mixed norms are important in modeling group correlations in ap-
plications such as genetics [1], electroencephalography [2] and sig-
nal processing [3]. In this work we consider mixed norms with
non-overlapping groups applied to matrix-form data A ∈ RM×N ,
where the rows am ∈ RN represent the different groups. Follow-
ing the notation of [3], the mixed `p,q-norm of A is defined as
‖A‖p,q = (

∑M
m=1 ||am||qp)1/q . We will focus on a special case,

the `∞,1-norm:

‖A‖∞,1 =

M∑
m=1

‖am‖∞ , (1)

where ‖u‖∞ = maxn{|un|} for u ∈ RN .
The main contribution of this work is a computationally efficient

algorithm for computing the projection onto the `∞,1 ball

proj‖·‖∞,1
(B, τ) := argmin

X

1

2
‖X−B‖2F s.t. ‖X‖∞,1 ≤ τ . (2)

This `∞,1 constraint problem has been applied to image annota-
tion [4], cognitive neuroscience [5] and least absolute shrinkage and
selection operator operator (LASSO) regression [6]. Existing algo-
rithms for solving this problem include:

• [7], which can handle general smooth cost function but re-
quires computation of the Hessian.

• [8], which derives an equivalent linear program.

• [4], which uses a projected gradient method.

• [6], which solves the problem by means of a root search tech-
nique.

Since [6] is, to the best of our knowledge, the current state-of-
the-art for solving the `∞,1 constraint problem, we use it as the
benchmark for all our comparisons. Our approach for solving (2)
is based on the Steffensen root search method [9]. While a general
root search based algorithm has previously been proposed for find-
ing the projection onto the `p,1 ball [6], including the `∞,1 case, in
this work we propose two modifications that significantly improve
the computational performance:

(i) The total number of major iterations for the root search is
reduced by applying a simple scheme for choosing a feasible
initial solution, devised via a reinterpretation of problem (2).

(ii) An analysis of the search function allows application of a
pruning pre-processing stage at each evaluation of the search
function, which greatly reduces the total number of projec-
tions to be performed.

Our numerical simulations indicate that these improvements re-
duce the computation time by a factor of 4 – 14 with respect to the
state-of-the art methods for solving problem (2).

2. PREVIOUS RELATED METHODS

2.1. Projection onto the `p,1 ball by root searching

The proximal operator of the `p,1 norm, defined as

prox‖·‖p,1(B, λ) := argmin
X

1

2
‖X−B‖2F + λ‖X‖p,1 , (3)

has a simpler solution than the projection onto the `p,1-ball (2), since
(3) can be computed by solving independent `p-norm proximity sub-
problems, i.e. argminxm

1
2
‖xm − bm‖2F + λ‖xm‖p [6].

One of the contributions of [6] was to propose a method to take
advantage of the separability of (3) in order to solve (2). LetL(X, θ)
be the Lagrangian of (2), and let θ∗ be the dual optimal. As long as
τ > 0, (2) satisfies Slater’s conditions for strong duality [10], and
the primal optimal X∗(θ∗) = argminX L(X, θ

∗) is obtained by
computing

X∗(θ∗) = argmin
X

1

2
‖X−B‖2F + θ∗(‖X‖p,1 − τ) . (4)

It can be shown [6, Lemma 1] that the scalar function

g(θ) = ‖X(θ)‖p,1 − τ , (5)

where X(θ) = prox‖·‖p,1(B, θ), satisfies the Fourier condi-
tions [11], i.e. in the interval [0, θmax]

4694978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

(i) g(0) > 0 > g(θmax)

(ii) g′(θ) < 0

(iii) g′′(θ) ≥ 0.

Additionally, there exists a unique solution for g(θ) = 0, and θ∗

coincides with this unique root. Thus, θ∗ can be found by using a
root finding method.

In [6] the root finding was implemented via a combination of bi-
section, inverse quadratic interpolation, and the secant method. This
root finding based solution for projections onto the `p,1 ball was ex-
tended to the more general `p,q case in a follow-up article [12]. Per-
formance comparisons indicated [12, Section 3.1] that this extended
algorithm was both much more accurate, and twice as fast as that of
[4] for projections onto the `∞,1 ball.

2.2. Projection onto the `1-ball

For our solution, we will need to solve the closely related problem
of projection onto the `1-ball, which is defined as

proj‖·‖1(u, τ) = min
x

1

2
‖x− u‖22 s.t. ‖x‖1 ≤ τ , (6)

where x,u ∈ RN .
The solution to (6) is given by [13]

x∗ =

{
u if ‖u‖1 < τ

shrink(x, λ(τ)) if ‖u‖1 ≥ τ ,
(7)

where shrink(x, λ(τ)) = sign(x) �max(|x| − λ(τ), 0), � is the
element-wise (Hadamard) vector product, and λ(τ) is a shrinkage
parameter that depend on τ . Several efficient algorithms exist for
finding this shrinkage parameter λ(τ) [14, 15, 16, 17, 18, 13, 19, 20,
21, 22].

2.3. Steffensen’s root search method

Steffensen’s method is a quasi-Newton root finding algorithm [23]
that is useful when an analytical expression of the derivative is not
available. The drawback is that it requires two function evaluations,
and is therefore usually more costly than Newton’s method. Given
the function f(x), Steffensen’s original iterations consist of the up-
date

xn+1 := xn +
xn

δF (xn, yn)
, (8)

where δF (xn, yn) =
f(yn)−f(xn)

yn−xn
and yn = xn + f(xn).

Steffensen’s method tends to exhibit convergence problems if
the initial x0 is too far from the actual root. Therefore, we use the
modified version proposed in [23], where yn = xn + αn|f(xn)|.
αn is an adaptive parameter that is recommended to take values that
satisfy

tolc �
tolu

2|f(xn)|
< |αn| <

tolu
|f(xn)|

, (9)

where tolc is chosen in accordance with the computer precision used
in the implementation, and tolu is a user-defined parameter.

3. PROPOSED METHOD

3.1. Preliminaries

In this section we summarize additional theoretical results from [6]
that will be useful in the analysis and derivation of the proposed
algorithm.

Lemma 1 (see [6, Lemma 1]). Let p ≥ 1 and p∗ (conjugate expo-
nent) satisfy 1

p
+ 1

p∗ = 1. Then, the norm ‖·‖p∗,∞ is dual to ‖·‖p,1.

Based on the concept of the dual-norm (see Lemma 1) and on
Moreau’s decomposition [24], [6] proved that the dual problem of

prox‖·‖p∗,∞(B, λ) := argmin
X

1

2
‖X−B‖2F +λ · ‖X‖p∗,∞ , (10)

where ‖X‖p∗,∞ = maxk{‖xk‖p∗}, is the projection onto the `p,1
ball proj‖·‖p,1(B, λ).

While the approach of [6] was solving (10) via (2), which in
turn can be effectively solved via a root finding approach, as de-
scribed in Section 2.1, here we take the reverse route to derive the
improvements in the proposed algorithm, as explained in the follow-
ing section.

3.2. Leveraging prox‖·‖1,∞(·), the dual of proj‖·‖∞,1
(·)

Applying the results from Section 3.1 to the specific case of
p = 1, we observe that the proximal operator of `1,∞ is the dual
of the projection on the `∞,1 ball and vice-versa, then X∗ =
proj‖·‖∞,1

(B, τ), can be written as X∗ = B−A∗, where

A∗ = prox‖·‖1,∞(B, τ) = min
A

1

2
‖A−B‖2F + τ · ‖A‖1,∞ . (11)

Now, if A∗ is known, we can define γ∗ = ‖A∗‖∞,1 = max{‖a∗m‖1},
and thus, after simple algebraic manipulation, (11) can be written as

min
{am}

1

2

∑
m

‖am − bm‖22 s.t. ‖am‖1 ≤ γ∗, ∀m . (12)

Clearly, (12) is separable in am, with the individual problems
corresponding to a projection on the `1-ball (see Section 2.2). Ac-
cordingly, if we devise a method for obtaining the optimal γ∗ value,
then the solution to (11), and therefore to (2), can be easily calcu-
lated. The γ∗ value can be found by a root finding method, as de-
scribed in the following section.

3.3. Search function

As originally proposed in [6], we use prox‖·‖1,∞(·) to solve
proj‖·‖∞,1

(·) in (5). Thus, we replace X by B − A and after
simple algebraic manipulations, we obtain

f(γ) =

M∑
m=1

||bm − am(γ)||∞ − τ , (13)

defined for γ ≥ 0. Furthermore, since (13) is equivalent to (5), it
also satisfies the Fourier conditions, and thus it has a unique root at
γ∗. For a given γ, am is computed using the approach described
in (12). As each am(γ) corresponds to projections onto the `1-ball,
we apply (7) and obtain

am(γ) =

{
bm if ‖bm‖1 < γ

shrink(bm, λ(γ)) if ‖bm‖1 ≥ γ .
(14)

By substituting (14) into (13), it is observed that only the terms
corresponding to the ‖bm‖1 ≥ γ contribute in the sum. Thus, f(γ)
only depends on the rows of B that have an `1-norm greater than γ.
Accordingly, at each evaluation of the search function, we can prune
the rows of B that do not fulfill this condition, and only perform the
projections specified in (14) on the remaining rows. Our numerical
experiments show that this pruning strategy can reduce the compu-
tational time by half or more.

4695

α ×10 -4

2 4 6 8 10

V
a
lu

e

0

5

10

15

20

25

(a)

γ
0

γ
*

α ×10 -4

2 4 6 8 10

n
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

9.5

10

10.5

11

11.5

12

12.5
(b)

Starting from 0

Starting from γ
0

Fig. 1. (a) Value of γ0 (blue) and γ∗ (red) versus α (b) Number
of iterations for Steffensen’s method to arrive at γ∗ starting from 0
(blue) and γ0 (red) for different α values. See Section 4.1.

3.4. Initial Point

Note that if ‖B‖∞,1 ≤ τ in (2) then the optimal solution is trivial,
X∗ = B. From here on, we will only consider the case where
‖B‖∞,1 =

∑M
m=1 ‖bm‖∞ > τ . Next, we seek to find a point

γ0 such that f(γ0) > 0 in (13). Then, as f(·) satisfies the Fourier
conditions, we can conclude that 0 ≤ γ0 ≤ γ∗.

We start by assuming that the `1-norm of the j th row of the so-
lution A∗ coincides with ‖A∗‖1,∞, i.e., maxm{‖am‖1} = ‖aj‖1.
Then, via (11), we can find aj as:

aj = argmin
a

1

2
‖a− bj‖22 + τ‖a‖1 = shrink(bj , τ) . (15)

If we define γ0 = ‖shrink(bj , τ)‖1, then we get

am =

{
shrink(bj , τ) if m = j

proj‖·‖1(bm, γ0) if m 6= j .
(16)

We now proceed to show that f(γ0) > 0. We will suppose that
‖bj‖∞ > τ as this is a simple algorithmic check, to be discussed
later, that is included in our method. By splitting the sum in (13)
for j and m 6= j, and using (16), as well as the trivial fact that
bj = sign(bj)� |bj |, we get

f(γ0) = τj(bj) +
∑
m 6=j

∣∣∣∣∣∣bm − proj‖·‖1(bm, γ0)
∣∣∣∣∣∣
∞
− τ , (17)

where τj(bj) = ‖|bj | −max(|bj | − τ, 0)‖∞. Now, we turn to the
analysis of τj(bj). As all the components involved in τj(bj) are
positive, we can write the norm as the maximum of all the compo-
nents of the vector. For each component, we have:

|b(i)j | −max(|b(i)j | − τ, 0) =

{
τ if |b(i)j | > τ

|b(i)j | if |b(i)j | ≤ τ .
(18)

Since we assumed that ‖bj‖∞ > τ , then at least one of the
components of bj must fulfill the first condition in (18). For at least
this component, we have |b(i)j | −max(|b(i)j | − τ, 0) = τ and all the
other components are less than or equal to τ . Accordingly, ‖|bj | −
max(|bj | − τ, 0)‖∞ = τ . Replacing this in (17), we obtain

f(γ0) =
∑
m 6=j

∣∣∣∣∣∣bm − proj‖·‖1(bm, γ0)
∣∣∣∣∣∣
∞
> 0 . (19)

Thus, f(γ0) > 0 and, instead of starting the root search from 0, we
can start from γ0, which is a better initial guess of γ∗. A priori, we
do not know which j is closest to the real maximum. In order to
obtain the initial point γ0, we solve (15) for every row and then take
among these solutions the one with the maximum `1-norm.

3.5. Proposed method

The full proposed method is presented in Algorithm 1. Note that if
maxn,k {bn,k} < τ , line 3 does not need to be evaluated and γ is
assigned an initial value of 0. Likewise, the shrinkage operation is
performed solely for the rows whose `∞-norm is greater than τ .

Algorithm 1: Proposed Method
Input: matrix B, τ , maxIter, tolerance

1 if ‖B‖∞,1 ≤ τ then
2 return B
3 Compute αk = ‖shrink(bk, τ)‖1 for each row of B. Define
γ = maxk(αk)

4 for k = 1 : maxIter do
5 Prune the rows of B that have `1-norm less than γ
6 Obtain f(γ) as defined in (13)
7 if |f(γ)| < tolerance then
8 break
9 Update γ using Steffensen method

10 end
11 Obtain A as defined in (12) using the obtained γ
12 Return B−A

Table 1. Computational results comparing the effect of the initial
point γ0. The percent change from the zero-start case is shown in
parenthesis for the γ0 case. See Section 4.1.

Starting at zero Starting at γ0
α / sparsity(%) num iter time(s) num iter time(s)

0.0001 / 1.02 12.6 1.1 9.4 (-25%) 0.63 (-43%)
0.0002 / 1.92 12.2 1.1 9.7 (-20%) 0.71 (-35%)
0.0003 / 2.68 11.9 1.1 10.0 (-17%) 0.77 (-29%)
0.0004 / 3.40 11.7 1.1 10.2 (-13%) 0.86 (-20%)
0.0005 / 4.17 11.5 1.1 11.3 (-2%) 1.11 (4%)
0.0006 / 4.94 11.3 1.1 11.3 (0%) 1.06 (0%)
0.0007 / 5.53 11.1 1.0 11.1 (0%) 1.05 (0%)
0.0008 / 6.28 11.1 1.1 11.1 (0%) 1.05 (0%)
0.0009 / 6.89 11.0 1.0 11.0 (0%) 1.04 (0%)
0.0010 / 7.53 11.0 1.1 11.0 (0%) 1.06 (0%)

4. RESULTS

All tests presented below were computed using single-threaded Mat-
lab code running on an Intel i7-4770K CPU (8 cores, 3.50 GHz,
32GB RAM). Matrix B was generated using a uniform distribution
on [−0.5, 0.5], and τ , the constraint used in (1), was taken such that
τ = α‖B‖∞,1, where α is a small constant. Specific sizes of B and
values of α are mentioned below. Our Matlab code [25] can be used
to reproduce our experimental results.

4.1. Impact of initial point

In order to study the impact of the initial point γ0 on the perfor-
mance of the algorithm, we constructed 100 different realizations of
a 2000 × 100 B matrix, considering1 α ∈ [10−4, 10−3]. For each
value of τ , the values for the initial point γ0 and the optimal value
γ∗ were averaged across the 100 realizations. These average values
for each τ are shown in Figure 1(a). It is observed that, at low α
values, γ0 is very close to the optimal value, but it goes rapidly to

1These sizes and sparsity values are typical for known applications of (1);
see [4, 5, 6]. Results for larger values of α can be obtained with our source
code [25]

4696

Table 2. Results for simulations with matrices of different size and the three tested methods. Error (Err.), number of iterations (N.I.) and
running times are shown for each of them. Speedup with respect to Sra is shown for Proposed and Proposed + pruning.

Sra [6] Proposed Proposed + pruning
Matrix Size α / sparsity(%) Err. N.I. Time(s) Err. N.I. Time(s) Speedup Err. N.I. Time(s) Speedup

0.0001 / 1.02 3.4e-11 9.6 4.04 2.6e-12 9.4 0.64 6.31 2.6e-12 9.4 0.27 14.96
2 000 × 100 0.0005 / 4.13 1.5e-10 13.2 4.20 1.4e-12 11.3 1.12 3.75 1.4e-12 11.3 0.84 4.98

0.0010 / 7.51 5.4e-10 14.5 4.41 1.3e-12 11.0 1.07 4.12 1.3e-12 11.0 0.82 5.36
0.0001 / 1.37 1.7e-10 17.0 13.99 1.6e-12 10.6 2.35 5.95 1.6e-12 10.6 1.27 10.99

5 000 × 200 0.0005 / 5.59 3.4e-10 11.9 13.67 8.0e-12 12.0 3.32 4.12 8.0e-12 12.0 2.44 5.61
0.0010 / 10.03 7.8e-10 17.9 14.10 6.2e-13 11.1 3.23 4.37 6.0e-12 11.1 2.57 5.50
0.0001 / 1.62 4.0e-10 11.4 27.74 9.4e-14 13.0 7.97 3.48 9.8e-14 13.0 5.71 4.86

10 000 × 300 0.0005 / 6.6 2.1E-09 14.5 29.03 6.9e-14 12.0 7.99 3.63 7.0e-14 12.0 5.64 5.15
0.0010/ 11.88 3.3E-09 15.7 37.09 2.8e-12 11.4 7.81 4.75 2.8e-12 11.4 5.79 6.41
0.0001 / 4.24 5.2E-10 20.0 166.39 3.4E-014 13.48 33.84 4.92 3.4E-014 13.48 26.56 6.26

10 000 × 3 000 0.0005 / 16.58 2.0E-09 19.0 166.25 9.6E-014 12.28 31.64 5.25 9.5E-014 12 26.59 6.25
0.001 / 28.52 1.2E-10 19.0 172.46 2.8E-014 12.28 32.99 5.23 2.8E-014 12 28.83 5.98
0.0001 / 6.18 7.0E-09 20.1 360.32 5.6E-14 13.43 74.6199 4.83 5.4E-14 13.43 57.45 6.27

10 000 × 8 000 0.0005 / 23.72 2.6E-08 19.1 366.10 1.1E-13 12.35 70.7858 5.17 1.0E-13 12.35 59.73 6.13
0.001 / 39.9 7.1E-10 18.0 357.63 5.0E-14 11.98 70.1626 5.10 5.0E-14 11.98 62.50 5.72

zero as τ increases. On the other hand, Figure 1(b) shows a compar-
ison of the average number of iterations that the proposed method
needs for arriving to the optimal value starting from either zero or
γ0. The number of iterations and computational time for the differ-
ent τ values, for the proposed method without pruning, along with
the improvements provided by using γ0, are listed in Table 1.

4.2. Description of the comparisons

We compare our proposed method without and with the pruning step
(denoted as “Proposed” and “Proposed with pruning”, respectively)
against [6], denoted as Sra. Unfortunately, we could not find a public
implementation of [6], and thus, we coded our own Matlab version
using the fzero function as root search method as suggested in [6].

We chose tolc = 10−12 and tolu = 10−8 in (9) for the Stef-
fensen root search method. The projections onto the `1-ball, needed
for the evaluation of the search function in [6] and in our algo-
rithm, are implemented using Michelot’s algorithm [15]. This algo-
rithm was chosen since it can be implemented efficiently [21, Section
3.2.2],[22, Section 3.1] and, for small size projections, we have em-
pirically observed that it has better computational performance than
the alternatives mentioned in Section 2.2.

We simulated five different sizes for the matrix B, namely1.
2000 × 100, 5000 × 200, 10000 × 300, 10000 × 3000 and 10000
× 8000. 100 realizations of B were taken. We also considered1

α ∈ {10−4, 5 × 10−4, 10−3}, to experimentally obtain approxi-
mate sparsity percentages (percentage of non-zero rows) of 1, 5 and
10%, respectively.

For all simulations, we recorded the error, measured as the con-
straint violation |‖X‖∞,1 − τ |, a sparsity value as the percentage
of non-zero rows, the number of iterations, and the total time until
convergence. As all methods arrive to the same value of sparsity,
only a single value is shown for each α. The results averaged over
the 100 realizations for the different matrix dimensions are shown in
Table 2.

4.3. Discussion of results

As can be observed from the results of Section 4.1, the initial point
γ0 has impact only at low α (and therefore τ) values. This is easily

explainable, as at high τ values the solution of (15) is zero. Ac-
cordingly, as suggested in Section 3.5, it is better to first evaluate
the conditions on maxn,k {bn,k} and ‖bi‖∞ to avoid unnecessary
shrinkage operations, as these comparisons do not incur a great com-
putational cost. When the initial point is different from zero, we see
that the number of iterations and the computational time are slightly
reduced. For our tests, when τ0 is not zero, an average reductions of
2.2 iterations (−15%) and of 24% in time are achieved.

As indicated by the results of Section 4.2, the proposed method
tends to require fewer iterations than Sra’s method, although this is
not directly comparable as the stopping criteria of the fzero func-
tion is different from the one we are using in Algorithm 1, and be-
cause our proposed algorithms are obtaining smaller errors. Never-
theless, our proposed algorithm achieves a lower constraint error in
less total time, with speedups of a factor of around 3 – 4 for “Pro-
posed” and more than 5.5 for “Proposed+pruning”. These speedups
tended to be higher at low τ values, as expected from the initial
point analysis, and do not seem to be related to the size of the ma-
trix. As expected, the pruning step does not change the number of
iterations or the error significantly (the differences are due to finite
precision arithmetic) but reduces the time of root search by approx-
imately 33%. Overall, the proposed method with pruning presents
speedups with respect to Sra’s method ranging from 5 – 6 on average
and going up to 10 – 14 for cases of higher sparsity in the solutions.

5. CONCLUSION

We have presented a new algorithm for projection onto the `∞,1-
norm ball that exploits the particular structure of this problem to
improve over previous methods. By analyzing Moreau’s decompo-
sition and the dual norm of the original problem, we derived an initial
guess that reduces the number of iterations for low constraint values.
In addition, the analysis of the search function allows us to use a
pruning strategy that considerably reduces the computational cost.

Empirically we have shown that the proposed method can pro-
vide speedups of around 5 – 6 times in most cases, and of up to 10
– 14 times in favorable sparsity conditions, and that the accuracy of
our solution is at least one order of magnitude better than the state-
of-the-art.

4697

6. REFERENCES

[1] L. Yuan, J. Liu, and J. Ye, “Efficient methods for overlapping
group lasso,” in Advances in Neural Information Processing
Systems, 2011, pp. 352–360.

[2] A. Gramfort, M. Kowalski, and M. Hämäläinen, “Mixed-norm
estimates for the M/EEG inverse problem using accelerated
gradient methods,” Physics in medicine and biology, vol. 57,
no. 7, p. 1937, 2012.

[3] M. Kowalski, “Sparse regression using mixed norms,” Applied
and Computational Harmonic Analysis, vol. 27, no. 3, pp. 303–
324, 2009.

[4] A. Quattoni, X. Carreras, M. Collins, and T. Darrell, “An effi-
cient projection for `1,∞ regularization,” in Proceedings of the
26th Annual International Conference on Machine Learning.
ACM, 2009, pp. 857–864.

[5] H. Liu, M. Palatucci, and J. Zhang, “Blockwise coordinate
descent procedures for the multi-task lasso, with applications
to neural semantic basis discovery,” in Proceedings of the
26th Annual International Conference on Machine Learning.
ACM, 2009, pp. 649–656.

[6] S. Sra, “Fast projections onto `1,q-norm balls for grouped fea-
ture selection,” Machine learning and knowledge discovery in
databases, pp. 305–317, 2011.

[7] B. Turlach, W. Venables, and S. Wright, “Simultaneous vari-
able selection,” Technometrics, vol. 47, no. 3, pp. 349–363,
2005.

[8] A. Quattoni, M. Collins, and T. Darrell, “Transfer learning for
image classification with sparse prototype representations,” in
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2008, 2008, pp. 1–8.

[9] L. Johnson and D. Scholz, “On Steffensen’s method,” SIAM
Journal on Numerical Analysis, vol. 5, no. 2, pp. 296–302,
1968.

[10] S. Boyd and L. Vandenberghe, Convex Optimization. New
York, NY, USA: Cambridge University Press, 2004.

[11] A. Akritas, “On the Budan-Fourier controversy,” ACM
SIGSAM Bulletin, vol. 15, no. 1, pp. 8–10, 1981.

[12] S. Sra, “Fast projections onto mixed-norm balls with applica-
tions,” Data Mining and Knowledge Discovery, vol. 25, no. 2,
pp. 358–377, Sep 2012.

[13] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Ef-
ficient projections onto the `1-ball for learning in high dimen-
sions,” in ICML, 2008, pp. 272–279.

[14] M. Held, P. Wolfe, and H. Crowder, “Validation of subgradient
optimization.” Math. Program., vol. 6, no. 1, pp. 62–88, 1974.

[15] C. Michelot, “A finite algorithm for finding the projection of
a point onto the canonical simplex of Rn,” Journal of Opti-
mization Theory and Applications, vol. 50, no. 1, pp. 195–200,
1986.

[16] E. van den Berg and M. Friedlander, “Probing the Pareto fron-
tier for basis pursuit solutions,” SIAM Journal on Scientific
Computing, vol. 31, no. 2, pp. 890–912, 2009.

[17] J. Liu and J. Ye, “Efficient Euclidean projections in linear
time,” in Proceedings of the International Conference on Ma-
chine Learning (ICML), 2009, pp. 657–664.

[18] K. Kiwiel, “Breakpoint searching algorithms for the contin-
uous quadratic knapsack problem,” Mathematical Program-
ming, vol. 112, no. 2, pp. 473–491, 2008.

[19] P. Gong, K. Gai, and C. Zhang, “Efficient Euclidean projec-
tions via piecewise root finding and its application in gradient
projection,” Neurocomputing, vol. 74, no. 17, pp. 2754–2766,
2011.

[20] L. Condat, “Fast projection onto the simplex and the `1 ball,”
Mathematical Programming, vol. 158, no. 1-2, pp. 575–585,
2016.

[21] P. Rodrı́guez, “An accelerated Newton’s method for projections
onto the `l1-ball,” in IEEE International Workshop on Machine
Learning for Signal Processing (MSLP), 2017.

[22] P. Rodriguez, “Accelerated gradient descent method for pro-
jections onto the l1-ball,” June 2017, submitted IEEE Image,
Video, and Multidimensional Signal Processing (IVMSP).

[23] S. Amat, S. Busquier, Á. Magreñán, and L. Orcos, “An
overview on Steffensen-type methods,” in Advances in Itera-
tive Methods for Nonlinear Equations. Springer, 2016, pp.
5–21.

[24] N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations
and Trends in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[25] G. Chau and P. Rodriguez, “Simulations for fast projection
onto the `1,∞-mixed norm ball using Steffensen root search,”
https://goo.gl/TngGrc.

4698

