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ABSTRACT
Sensor selection refers to the problem of intelligently select-
ing a small subset of a collection of available sensors to re-
duce the sensing cost while preserving signal acquisition per-
formance. The majority of sensor selection algorithms find
the subset of sensors that best recovers an arbitrary signal
from a number of linear measurements that is larger than the
dimension of the signal. In this paper, we develop a new sen-
sor selection algorithm for sparse (or near sparse) signals that
finds a subset of sensors that best recovers such signals from a
number of measurements that is much smaller than the dimen-
sion of the signal. Existing sensor selection algorithms cannot
be applied in such situations. Our proposed Incoherent Sensor
Selection (Insense) algorithm minimizes a coherence-based
cost function that is adapted from recent results in sparse re-
covery theory. Using three datasets, including a real-world
dataset on microbial diagnostics, we demonstrate the superior
performance of Insense for sparse-signal sensor selection.

Index Terms— Sensor selection, coherence, optimiza-
tion, compressive sensing

1. INTRODUCTION

The accelerating demand for capturing signals at high resolu-
tion is driving acquisition systems to employ an increasingly
large number of sensing units. However, factors like manu-
facturing costs, physical limitations, and energy constraints
typically define a budget on the total number of sensors that
can be implemented in a given system. This budget constraint
motivates the design of sensor selection algorithms [1] that
intelligently select a subset of sensors from a pool of avail-
able sensors in order to lower the sensing cost with only a
small deterioration in acquisition performance.

In this paper, we extend the classical sensor selection
setup, where D available sensors obtain linear measurements
of a signal x ∈ RN according to y = Φx with each row
of Φ ∈ RD×N corresponding to one sensor. In this setup,
the sensor selection problem is one of finding a subset Ω of
sensors (i.e., rows of Φ) of size |Ω| = M such that the signal
x can be recovered from its M linear measurements

yΩ = ΦΩx (1)

with minimal reconstruction error. Here, ΦΩ ∈ RM×N is
called the sensing matrix; it contains the rows of Φ indexed
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Fig. 1: Schematic of the sensor selection problem for sparse
signals. Here, M = 3 sensors indexed by Ω = {2, 8, 17} are
selected from D = 20 available sensors to recover a K = 2-
sparse vector x ∈ RN=10, from the linear system yΩ = ΦΩx.

by Ω. The lion’s share of current sensor selection algorithms
[1–3] select sensors that best recover an arbitrary signal x
from M > N measurements. In this case, (1) is overde-
termined. Given a subset of sensors Ω, the signal x is re-
covered simply by inverting the sensing matrix while com-
puting Φ†ΩyΩ, where Φ†Ω is the pseudoinverse of ΦΩ. Such
approaches do not exploit the fact that many real-world sig-
nals are (near) sparse in some basis [4]. It is now well-known
that (near) sparse signals can be accurately recovered from
a number of linear measurements M � N using sparse re-
covery/compressive sensing (CS) techniques [5–7]. Conven-
tional sensor selection algorithms are not designed to exploit
low-dimensional signal structure. Indeed, they typically fail
to select the appropriate sensors for sparse signals in this un-
derdetermined setting (M < N ).

In this paper, we develop a new sensor selection frame-
work that finds the optimal subset of sensors Ω that best re-
covers a (near) sparse signal x from M < N linear mea-
surements (see Fig. 1). In contrast to the conventional sensor
selection setting, here the sensing equation (1) is underdeter-
mined, and it can not be simply inverted in closed form. A key
challenge in sensor selection in the underdetermined setting is
that we must replace the cost function that has been useful in
the classical, overdetermined setting, namely the estimation
error ‖x − x̂‖22 (or the covariance of the estimation error in
the presence of noise). In the overdetermined setting, this er-
ror can be obtained in closed form simply by inverting (1).
In the underdetermined setting, this error has no closed form
expression. Indeed, recovery of a sparse vector x from yΩ

requires a computational scheme [8, 9].

4689978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



Fortunately, the sparse recovery theory tells us that one
can reliably recover a sufficiently sparse vector x from its lin-
ear measurements yΩ when the columns of the sensing matrix
ΦΩ are sufficiently incoherent [10–12]. Define the coherence
between the columns φi and φj in the sensing matrix ΦΩ as
µij(ΦΩ) =

|〈φi,φj〉|
‖φi‖‖φj‖ . If the values of µij(ΦΩ) for all pairs of

columns (i, j) are bounded by a certain threshold, then sparse
recovery algorithms such as Basis Pursuit (BP) [10, 13, 14]
can recover the sparse signal x exactly. This theory suggests
a new cost function for sensor selection. To select the sensors
Ω that reliably recover a sparse vector, we can minimize any
monotonic function of coherence. Here we minimize the av-
erage squared coherence µ2

avg(ΦΩ) = 1

(N
2 )

∑
1≤i<j≤N

µ2
ij(ΦΩ),

to maximize the average recovery performance over sparse
vectors x. The challenge now becomes formulating an opti-
mization algorithm that selects the subset of the rows of Φ (the
sensors) whose columns have the smallest average squared
coherence.

1.1. Contributions

We make three distinct contributions in this work. First, we
propose the sparse-signal sensor selection problem and we
demonstrate that the standard cost functions used in overde-
termined sensor selection algorithms are not suitable for the
underdetermined case.

Second, we develop a new sensor selection algorithm that
optimizes the new cost function µ2

avg(ΦΩ); call it the Incoher-
ent Sensor Selection (Insense) algorithm. Insense employs
an efficient optimization technique to find a subset of sensors
with smallest average coherence among the columns of the
selected sensing matrix ΦΩ. The optimization technique –
projection onto the convex set defined by a scaled-boxed sim-
plex (SBS) constraint – is of independent interest. We have
made the codes for the Insense algorithm available online at
https://github.com/amirmohan/Insense.git.

Third, we demonstrate the superior performance of In-
sense over conventional sensor selection algorithms using an
exhaustive set of experimental evaluations that include real-
world datasets from microbial diagnostics and four perfor-
mance metrics: average mutual coherence, sparse recovery
performance, frame potential, and condition number. We
demonstrate that, for the kinds of redundant, coherent, or
structured Φ that are common in real-world applications, In-
sense finds the best subset of sensors in terms of sparse recov-
ery performance. Indeed, in these cases, many conventional
sensor selection algorithms fail completely.

1.2. Related work
Existing sensor selection algorithms mainly study the sen-
sor selection problem in the overdetermined regime (when
M ≥ N ) [1–3, 15]. In the overdetermined regime, robust
signal recovery can be obtained using the solution to the
least squares (LS) problem in the sensing model (1), which

motivates as a cost function the mean squared error (MSE)
[16–18] or a proxy of the MSE [19–21] of the LS solution.
For instance, Joshi, et al. [1] employ a convex optimization-
based algorithm to minimize the log-volume of the confi-
dence ellipsoid around the LS solution of x. Shamaiah et
al. [2] develop a greedy algorithm that outperforms the con-
vex approach in terms of MSE. FrameSense [3] minimize
the frame potential (FP) of the selected matrix FP(ΦΩ) =∑
∀(i,j)∈Ω, i<j |〈φi, φj〉|2, where φi represents the ith row of

Φ. Several additional sensor selection algorithms that assume
a non-linear observation model [22, 23] also operate only in
the overdetermined regime.

2. PROBLEM STATEMENT

Consider a set of D sensors taking nonadaptive, linear mea-
surements of a K-sparse (i.e., with K non-zero elements)
vector x ∈ RN following the linear system y = Φx, where
Φ ∈ RD×N is a given sensing matrix. We aim to select a
subset Ω of sensors of size |Ω| = M � D, such that the
sparse vector x can be recovered from the resulting M < N
linear measurements yΩ = ΦΩx with minimal reconstruc-
tion error. Here, ΦΩ contains the rows of Φ indexed by Ω,
and yΩ contains the entries of y indexed by Ω. This model
for the sensor selection problem can be adapted to more gen-
eral scenarios. For example, if the signal is sparse in a ba-
sis Ψ, then we simply consider Φ = ΘΨ as the new sens-
ing matrix, where Θ is the original sensing matrix. In or-
der to find a subset Ω of sensors (rows of Φ) that best re-
covers a sparse signal x from yΩ,1 we aim to select a sub-
matrix ΦΩ ∈ RM×N that attains the lowest average squared
coherence µ2

avg(ΦΩ). The term µavg averages the off-diagonal
entries of ΦTΩΦΩ (indexed by 1 ≤ i < j ≤ N ) after col-
umn normalization. Define the diagonal selector matrix Z =
diag(z) with z = [z1, z2, z3, . . . , zD]T and zi ∈ {0, 1}, where
zi = 1 indicates that the ith row (sensor) in Φ is selected
and zi = 0 otherwise. This enables us to formulate the sen-
sor selection problem as the following optimization problem

min
z∈{0,1}D

∑
1≤i<j≤N

Gij
2

GiiGjj
, subject toG = ΦTZΦ, 1T z =

M, where 1 is the all-ones vector. This Boolean optimiza-
tion problem is combinatorial, since one needs to search over(
D
M

)
combinations of sensors to find the optimal set Ω. To

overcome this complexity, we relax the Boolean constraint on
zi to the box constraint zi ∈ [0, 1] to arrive at the following
problem

min
z∈[0,1]D

∑
1≤i<j≤N

Gij
2

GiiGjj
, s.t.G = ΦTZΦ, 1T z = M, (2)

which supports an efficient gradient–projection algorithm to
find an approximate solution. We develop this algorithm next.

1Or find one of the solutions if many solutions exists.
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3. THE INSENSE ALGORITHM

We now outline the steps that Insense takes to solve the prob-
lem (2). We slightly modify the objective of (2) to

fε(z) =
∑

1≤i<j≤N

Gij
2 + ε1

Gii Gjj + ε2
where G = ΦTZΦ, (3)

where the small positive constants ε2 < ε1 � 1 make
the objective well-defined and bounded over z ∈ [0, 1]D.
The objective function (3) is smooth and differentiable but
non-convex; the box constraints on z are linear. We mini-
mize the objective using the iterative gradient-projection al-
gorithm. The gradient ∇zf ∈ RD can be computed us-
ing the multidimensional chain rule of derivatives [24] as
(∇zf)i =

(
Φ∇GfΦT

)
ii

for i = 1, . . . , D. The N × N
upper triangular matrix ∇Gf is the gradient of f in terms of
the (auxiliary) variable G at the point G = ΦTZΦ, given by
(∇Gf)ij = 2Gij/(Gii Gjj + ε2), when i < j, (∇Gf)ij =

−
∑
∀` 6=iG``

(
G2
i` + ε1

)
/(Gii G`` + ε2)

2, when i = j, and
(∇Gf)ij = 0 elsewhere.

The Insense algorithm proceeds as follows. First,
the variables G and Z are initialized randomly. Next,
we perform the following update in iteration k, zk+1 =
PSBS

(
zk − γk∇zf(zk)

)
, where PSBS denotes the projection

onto the convex set defined by the scaled boxed-simplex
(SBS) constraints 1T z = M and z ∈ [0, 1]D which we de-
tail in the next paragraph. For certain bounded step size rules
(e.g., γk ≤ 1/L, where L is the Lipschitz constant of ∇zf ),
the sequence {zk} converges to a critical point of the non-
convex problem [25, 26]. In our implementation, we use a
backtracking line search to determine γk in each step [26].
We now detail our approach to solving the SBS projection
problem

min
z

1

2
‖z − y‖22, s.t.

∑
i

zi = M, zi ∈ [0, 1]∀i=1,...,D. (4)

We emphasize that, for M > 1, the SBS projection prob-
lem is significantly different from the (scaled-)simplex con-
straint (

∑
i zi = M) projection problem that has been stud-

ied in the literature [27–29], due to the additional box con-
straints zi ∈ [0, 1]. The Lagrangian of the problem (4) can be
written as f(z, λ, α, β) = 1

2‖z − y‖
2
2 +λ (

∑
i zi −M) +∑

i αi(−zi) +
∑
i βi(zi − 1), where λ, α, β are Lagrange

multipliers for the equality and inequality constraints, re-
spectively. The Karush-Kuhn-Tucker (KKT) conditions are
given by zi − yi + λ − αi + βi = 0,∀i,

∑
i zi −M = 0,

αi(−zi) = 0, βi(zi − 1) = 0, αi, βi ≥ 0, 0 ≤ zi ≤ 1, ∀i.
According to the complimentary slackness condition for the
box constraint zi ∈ [0, 1], we have the following three cases
for zi: (a) zi = 0: βi = 0, αi = yi + λ > 0, (b)
zi = 1: αi = 0, βi = 1 − yi − λ > 0, (c) zi ∈ (0, 1):
αi = βi = 0, zi = yi +λ. Therefore, the value of λ holds the
key to the proximal problem (4). However, finding λ is not an

Table 1: Comparison of Insense against the baseline algo-
rithms on selecting M = 10 rows from a structured Iden-
tity/Gaussian Φ.

Algorithms µavg(ΦΩ) FP(ΦΩ) CN(ΦΩ) BP accuracy %

Insense 0.3061±0.0047 1019 ±313 1.93±0.19 92.27±1.42
EigenMaps – 0.00±0.00 1.00±0.00 4.00±0.00
MSE-G 0.3872±0.0305 1155±374 11.51±0.93 57.91±1.09
FrameSense – 0.00±0.00 1.00±0.00 4.00±0.00
MI-G – 0.00±0.00 1.00±0.00 4.00±0.00
Entropy-G – 0.00±0.00 1.00±0.00 4.00±0.00
Determinant-G – 0.00±0.00 1.00±0.00 4.00±0.00
Greedy SS – 0.00±0.00 1.00±0.00 4.00±0.00
Convex SS 0.3137±0.0075 2279±470 2.22±0.25 88.64±3.64

easy task, since we do not know which entries of z will fall on
the boundary of the box constraint (and are equal to either 0 or
1). In order to find the entries zi that are equal to 0, we assume
without loss of generality that the values of y are sorted in as-
cending order: y1 ≤ y2 ≤ . . . yD. We note that, in all three
cases above, zi = max(min(yi − λ, 1), 0). Therefore,

∑
i zi

is a non-decreasing function of λ. We evaluate
∑
i zi at the

following values of λ: λ = −y1: z1 = 0, zi = min(yi−y1, 1)
for i ≥ 2, λ = −y2: z1 = z2 = 0, zi = min(yi − y1, 1)
for i ≥ 3, . . . λ = −yD: z1 = z2 = . . . = zD = 0.
Thus, the entries in z that are equal to 0 correspond to the
first K0 entries in y, where K0 is the largest integer k such
that

∑
i max(min(yi − yk, 1), 0) ≥ M . Similarly, we can

find the entries in z that are equal to 1 by negating z and y
in (4). Let p = −y and assume that its entries are sorted
in ascending order; a procedure similar to that above shows
that the entries in z that are equal to 1 correspond to the first
K1 entries in p, where K1 is the largest integer K such that∑
i max(min(pi − pk − 1, 0),−1) ≥ −M . Knowing which

entries in z are equal to 0 and 1, we can solve for the value
of λ by working with the entries with values in (0, 1). Using
case (c) above and denoting the index set of these entries by
ζ, we have λ = (M −K1 −

∑
i∈ζ yi)/|ζ|, and the solution

to (4) is given by zi = max(min(yi − λ, 1), 0).

4. EXPERIMENTS

In this section, we experimentally validate Insense using a
range of synthetic and real-world datasets. In all experiments,
we set ε1 = 10−9 and ε2 = 10−10 (anything in the range
ε2 < ε1 � 1 can be utilized). We terminate Insense when
the relative change of the cost function µ2

avg(ΦΩ) drops be-
low 10−7. We compare Insense with several leading sensor
selection algorithms, including Convex Sensor Selection [1],
Greedy Sensor Selection [2], EigenMaps [15], and Frame-
Sense [3]. We also compare with four greedy sensor selec-
tion algorithms that were featured in [3]. The first three mini-
mize different information theoretic measures of the selected
sensing matrix as a proxy to the MSE: the determinant in
Determinant-G [19], mutual information (MI) in MI-G [20],
and entropy in Entropy-G [21]. The final greedy algorithm,
MSE-G [16–18], directly minimizes the MSE of the LS re-
construction error.

We compare the sensor selection algorithms using the fol-
lowing four metrics: Average coherence µavg(ΦΩ), Frame po-
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Table 2: Comparison of Insense against the baseline algo-
rithms on selecting M = 10 rows from a structured Uni-
form/Gaussian Φ.

Algorithms µavg(ΦΩ) FP(ΦΩ) CN(ΦΩ) Gaussian % BP accuracy %
Insense 0.3165±0.0023 9320 ±3292 1.46±0.07 100±0 58.55±2.64
EigenMaps 0.3215±0.0021 7230±2319 2.07±0.12 90±0 57.60±3.72
MSE-G 0.5805±0.0440 78530±12450 5.99±0.31 17±4 49.90±3.54
FrameSense 0.3273±0.0059 6095±1708 3.19±0.92 84±5 58.15±2.26
MI-G 0.6814±0.0556 93260±109250 6.26±0.77 7±4 51.60±5.21
Entropy-G 0.7007±0.0804 98950±16216 6.61±0.48 5±7 53.70±5.21
Determinant-G 0.7303±0.0545 105700±11228 6.57±0.31 3±4 55.50±4.50
Greedy SS 0.7303±0.0545 105700±11228 5.57±0.31 3±4 55.50±4.50
Convex SS 0.5788±0.1140 75270±27383 5.97±0.77 20±15 54.40±4.20

tential FP(ΦΩ), Condition number CN(ΦΩ), and BP recovery
accuracy. Depending on the task, in some experiments we
only report a subset of the metrics. To compute BP recov-
ery accuracy, we average the performance of the BP algo-
rithm [30] over 100 random sparse recovery trials.

Dataset 1) Identity/Gaussian matrix: We construct our
first dataset by concatenating two 50× 50 matrices: An iden-
tity matrix and a random matrix with i.i.d. Gaussian entries.
Such matrices feature prominently in certain real-world CS
problems (see [31]). To achieve an optimal sparse recov-
ery performance, the sensor selection algorithm should select
rows (sensors) from the Gaussian submatrix. Table 1 com-
pares the performance of Insense to the baseline algorithms
for the problem of selecting M = 10 rows from the struc-
tured Identity/Gaussian Φ. We repeat the same experiment
10 times with different random Gaussian matrices.2 In par-
ticular, Insense, Convex SS, and MSE-G are the only algo-
rithms that select rows of the Gaussian sub-matrix. While
achieving the minimum FP(ΦΩ) (= 0), the other algorithms
perform poorly on BP recovery. The greedy algorithms se-
lect rows from the identity matrix that result in columns with
all-zero entries and thus fail to recover most of the entries in
x. Digging deeper, Insense selects rows with smaller column
coherence than Convex SS and MSE-G. As a result, Insense
achieves the best BP recovery performance (Table 1) among
these three algorithms.

Dataset 2) Uniform/Gaussian matrix: To study the qual-
ity of the box constraint relaxation in (2), we compare Insense
against the baseline algorithms for a matrix Φ where we know
the globally optimal index set of rows Ω. We concatenate a
10× 200 matrix with i.i.d. Gaussian entries and a 190× 200
matrix with i.i.d. [0, 1] uniform distribution entries. In this
case, one would expect that the Gaussian submatrix has the
lowest µavg when we set M = 10. In all 10 random trials,
Insense successfully selects all Gaussian rows and hence find
the globally optimal set of sensors. FrameSense and Eigen-
Maps miss, on average, 10–20% of the Gaussian sensors. The
other baselines algorithms, including Convex SS, select only a
small portion (<20%) of the Gaussian rows. Table 2 indicates
that Insense achieves better BP recovery performance, since it
selects exclusively Gaussian rows, resulting in the minimum
average coherence µavg of the resulting sensing matrix.

2Dashes correspond to instances where the selected matrices ΦΩ contain
columns with all zero entries; here the average coherence µavg is undefined.

Table 3: Comparison of Insense against the baseline algo-
rithms on selecting M DNA probes to identify pathogenic
samples containing K bacterial organisms.

BP accuracy in detecting organisms %
Number of organisms K = 2 K = 3 K = 5

Number of probes 8 12 15 12 15 20 15 20 25

Insense 68.33 94.78 99.65 71.74 93.95 99.53 51.95 92.71 99.10
EigenMaps 49.65 84.69 94.66 54.68 78.09 96.25 27.47 72.13 95.30
MSE-G 60.79 91.53 97.91 67.16 89.15 98.40 43.26 83.52 97.40
FrameSense 61.83 88.40 95.71 62.32 82.29 98.36 35.16 81.92 96.50
MI-G 59.98 89.68 96.40 65.69 84.10 97.39 37.96 79.72 96.00
Entropy-G 61.25 91.53 98.61 66.35 88.96 99.19 42.86 89.61 97.50
Determinant-G 46.75 82.13 94.55 48.97 76.13 96.03 24.48 72.73 92.81
Greedy SS 57.54 87.70 96.87 59.65 84.64 97.34 36.16 80.22 94.11
Convex SS 53.36 87.94 98.94 57.58 87.59 98.89 38.46 83.52 98.40
Random 61.53 88.79 96.66 62.29 86.15 97.72 38.88 82.94 86.44

Dataset 3) Microbial Diagnostics: We assess the perfor-
mance of Insense on a real-world dataset from microbial di-
agnostics. Microbial diagnostics seek to detect and identify
microbial organisms in a sample. Next-generation systems
detect and classify organisms using DNA probes that bind
(hybridize) to the target sequence and emit some kind of sig-
nal (e.g., fluorescence). Designing DNA probes for microbial
diagnostics is an important application of sensor selection in
the underdetermined sensing regime. We run Insense and the
baseline sensor selection algorithms on a large sensing ma-
trix comprising the hybridization affinity of D = 100 random
DNA probes to N = 42 bacterial species (see [31]). For
each algorithm, after selecting M probes and constructing a
sensing matrix ΦΩ with |Ω| = M , we perform BP recovery
for multiple sparse vectors x with random support. We re-
peat the same experiment for all

(
N
K

)
sparse vectors x with

K = {2, 3, 5} non-zero elements (i.e., bacteria present) and
report the average BP recovery performance on identifying
the composition of the samples in Table 3. The DNA probes
selected by Insense outperform all of the baseline algorithms
in identifying the bacterial organisms present. Specifically,
Insense requires a smaller number of DNA probes than the
other algorithm to achieve almost perfect detection perfor-
mance (BP accuracy > 99%), suggesting that Insense is the
most cost-efficient algorithm to select DNA probes for this
application. Moreover, the performance gap between Insense
and the other algorithms grows as the number of bacterial
species present in the sample K increases, indicating that In-
sense has better recovery performance in complex biological
samples.

5. CONCLUSIONS

In this paper, we developed the Incoherent Sensor Selection
(Insense) algorithm for the underdetermined sensor selection
problem that optimizes the average squared coherence of the
columns of the selected sensors (rows) via a computationally
efficient relaxation. Our synthetic and real-world data results
have both verified the utility of the average squared coherence
metric and the performance of the Insense algorithm. In par-
ticular, Insense provides superior performance than existing
state-of-the-art sensor selection algorithms, especially in the
real-world problem of microbial diagnostics.
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