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ABSTRACT
Motivated with the concept of transform learning and the
utility of rational wavelet transform in audio and speech pro-
cessing, this paper proposes Rational Wavelet Transform
Learning in the Statistical sense (RWLS) for natural images.
The proposed RWLS design is carried out via lifting frame-
work and is shown to have a closed form solution. The
efficacy of the learned transform is demonstrated in the appli-
cation of compressed sensing (CS) based reconstruction. The
learned RWLS is observed to perform better than the existing
standard dyadic wavelet transforms.

Index Terms— Rational Wavelet, Statistically Matched
Wavelet, Natural Images, Lifting Framework

1. INTRODUCTION

Transform learning (TL) is an active research area where the
sparsifying transform along with the transform domain sig-
nal is learned using some constraints for a class of signals.
Currently, TL is being used in several applications including
image/video denoising and MRI reconstruction [1–3]. While
TL is being used actively, non-convexity of the problem hav-
ing no closed form solution makes it difficult to solve. Hence,
greedy algorithms are used to solve TL problem.

Among existing transforms, discrete wavelet transform
(DWT) is widely used in applications because of its ability of
efficient signal representation [4]. Non-uniqueness of wavelet
basis motivates one to learn wavelet transform in applications.
Wavelet transform learning can be viewed as a specific case
of transform learning. Since the integer translates of the asso-
ciated wavelet filters form the basis in l2-space, wavelet trans-
form learning corresponds to learning of wavelet filters.

Generally, the dyadic wavelet transform is used that de-
composes input signal spectrum into two uniform frequency
bands via two-channel filterbank. On the other hand, rational
wavelet transform (RWT) provides non-uniform frequency
band representation of signal spectrum that is seen to be use-
ful in some applications [5, 6]. RWT has also been used in
pattern recognition [7] and feature extraction [8]. Although
methods for RWT designs have been presented in the litera-
ture [9–12], designed wavelets are independent of the signal
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of interest. Recently, a method has been proposed in [13] to
learn rational wavelet deterministically from a given signal.
Since [13] requires full signal, it cannot be used in inverse
problems such as CS-based reconstruction where one does
not have access to the full original signal.

This paper proposes rational wavelet learning for natural
images. It has been shown that natural images can be modeled
as fractional Brownian motion (fBm) processes in [14]. fBm
processes are Gaussian non-stationary random processes with
stationary increments that form a class of statistically self-
similar processes [15] and have been used widely in image
processing [16, 17].

The above discussion of transform learning, flexibility of
rational wavelet transform, and modeling of natural images
via fBm processes motivates us to learn rational wavelet trans-
form for natural images in the statistical sense. Specifically,
statistics of a set of natural images are used to propose a
method for learning separable rational wavelet transform for
this class of images. Lifting framework for rational wavelet
introduced in [13] is utilized in the proposed work and is
called the RWLS method. The proposed formulation leads to
a convex problem that can be solved by least squares making
the RWLS method computationally efficient.

Following are the salient contributions of this work:
1. Statistical learning of rational separable wavelet trans-

form for natural images is proposed.
2. Lifting framework, that is Digital Signal Processing

(DSP) hardware friendly, is used in the proposed
method making the learned transform easily imple-
mentable on hardware.

3. The proposed formulation leads to convex problem un-
like conventional TL and can be solved easily.

4. The proposed RWLS is applied in compressed sensing
based reconstruction and is observed to perform better
than the existing dyadic wavelet transforms.

2. BRIEF BACKGROUND

2.1. Lifting in Dyadic Wavelet

Lifting methodology supports customized wavelet design
[18], [19]. This design is modular, guarantees perfect re-
construction, and allows non-linear filters to be part of the
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wavelet structures. A general lifting scheme consists of three
steps: Split, Predict, and Update (Refer to Fig. 1). In the split
step, given input signal is divided into even xe[n] and odd
xo[n] indexed samples. The corresponding filterbank struc-
ture is called as the Lazy wavelet system [19] and is converted
to the conventional wavelet system using successive predict
and update stage filters as shown in Fig. 2 with analysis filters
labeled as Gl(z) = Z{gl[n]}, Gh(z) = Z{gh[n]} and the
synthesis filters as Fl(z) = Z{fl[n]}, Fh(z) = Z{fh[n]}.

In the Predict Lifting step, odd samples are predicted from
the neighboring even samples using the predictor P ≡ T (z)
or vice-versa. This step modifies the analysis highpass filter
and the synthesis lowpass filter as:

Gnewh (z) = Gh(z)−Gl(z)T (z2). (1)

Fnewl (z) = Fl(z) + Fh(z)T (z
2). (2)

The Update Lifting step modifies the analysis lowpass filter
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Fig. 1: Steps of Lifting: Split, Predict and Update
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Fig. 2: Two Channel Wavelet System

and the synthesis highpass filter. The update step filter is de-
noted with the symbol U ≡ S(z) and the related equations
are given as:

Gnewl (z) = Gl(z) +Gh(z)S(z
2). (3)

Fnewh (z) = Fh(z)− Fl(z)S(z2). (4)

2.2. Rational Wavelet
Let us consider Fig. 3(a) with 2-channel ( 2

3 ,
1
3 ) rational

wavelet filterbank that can be converted into an equivalent
uniformly decimated M-band structure (Fig. 3(b)). Filters
G0(z) and G1(z) of Fig. 3(b) can be written as an equivalent
filter Gl(z) of Fig. 3(a) using the following equation:

Gl(z) = G0(z
2) + z3G1(z

2). (5)

Similarly, synthesis filters F0(z) and F1(z) of Fig. 3(b) can
be written as an equivalent filter Fl(z) of Fig. 3(a) using the
following equation:

Fl(z) = F0(z
2) + z−3F1(z

2), (6)

while other filters remain same, i.e., Gh(z) = G2(z) and
Fh(z) = F2(z).
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Fig. 3: Rational wavelet system and its equivalent M -band structure
2.3. Fractional Brownian Motion

Fractional Brownian motion BH(t) is a Gaussian, zero mean,
self similar, non-stationary random process with stationary in-
crements [20]. The auto-covariance of the corresponding dis-
crete time process BH [n] is given by:

rHB [n1, n2] =
σ2
H

2
(|n1|2H − |n1 − n2|2H + |n2|2H), (7)

where σ2
H = var(BH [1]) = 1

Γ(2H+1)|sin(πH)| , and H is the
self-similarity index, also called as Hurst exponent. The sta-
tistical properties of fBm processes are completely character-
ized by the single parameterH that can be estimated using the
maximum likelihood estimation method presented in [21].

3. PROPOSED RWLS LEARNING METHOD

This section presents the proposed RWLS learning method
on ( 2

3 ,
1
3 ) rational wavelet statistically matched to natural im-

ages. Learning of separable two-dimensional (2D) rational
wavelet is presented that requires learning 1-D RWLS sep-
arately matched to the row space and the column space of
natural images. The proposed strategy is identical on either
the row or the column space. For the sake of readers’ ease, let
us first consider design for the column space.

3.1. Proposed Learning for the Column Space

Consider the initial architecture of uniformly decimated 3-
band Lazy wavelet with filters (in Fig. 3(b)):

Gi(z) = zi, i = 0, 1, 2

Fi(z) = z−i, i = 0, 1, 2. (8)

This Lazy wavelet is subsequently transformed to equivalent
( 2

3 ,
1
3 ) rational wavelet via (5) and (6). On feeding the vec-

torized column form of collection of natural images, labeled
as x[n], through this rational Lazy wavelet filterbank, follow-
ing approximate a[n] and detail d[n] subband coefficients are
obtained:

a[n] =

{
x
[

3n
2

]
if n is a even

x
[

3n−1
2

]
if n is a odd,

(9)
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d[n] = x[3n+ 2] (10)

Next, the lowpass and highpass filters of the Lazy rational
wavelet structure are lifted via predict and update stage poly-
nomial learned as explained in the following subsections.

3.1.1. Predict stage

We require to predict one branch of samples with the help
of the other branch in the predict stage. In rational wavelet
structure, this requires the concept of rate converter as pro-
posed in [13] because the output sample rate of two branches
is unequal (refer to Fig. 4). Considering the predict polyno-
mial filter T (z) as

T (z) = t0z + t1z
2, (11)

we obtain

dnew[n] = d[n]− t0x[3n+ 1]− t1x[3n+ 3],

= x[3n+ 2]− t0x[3n+ 1]− t1x[3n+ 3]. (12)

Thus, the choice of T (z) in (11) allows d[n] = x[3n + 2]
to be exactly predicted from the neighboring samples. These
updated detail coefficients dnew[n] can also be viewed as the
error in predicting the lower branch samples. Hence, (12) is
re-written as

e[n] = dnew[n] = x[3n+2]−t0x[3n+1]−t1x[3n+3]. (13)

T (z) is learned by minimizing the mean squared prediction
error (mse) given by:

ζ[n] = E(e2[n]) = E({x[3n+2]−t0x[3n+1]−t1x[3n+3]}2),
(14)

where E(.) denotes the expectation operator. To minimize
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Fig. 5: Update stage
mse, mse vector ζ is we differentiated with respect to t and is
equated to zero as:

∂ζ

∂t
=0− 2E[A′b] + 2E[A′A]t = 0

=⇒ E[A′A]t = E[A′b]. (15)

Assuming that the input signal x[n], corresponding to the
column space of natural images, belongs to an fBm process,
E[A′A] and E[A′b] are computed using (7) and (15) is
solved for t. On simplifying the structure of Fig. 4, the
updated equivalent analysis highpass filter, using the learned
predict filter T (z), can be written as:

Gnewh (z) = Gh(z)−
1∑
k=0

Gl(z
1
2W 2k

2 )T (z
3
2W

3k
2 ), (16)

where Wk = e−j
2π
k . For the update of the corresponding

synthesis lowpass filter, the rational wavelet structure is con-
verted to the equivalent 3-band structure and the polyphase
matrix E(z) of the analysis side is computed using G0(z),
G1(z) and Gnew2 (z). On applying the condition of perfect re-
construction [22] in (17), the polyphase matrix R(z) of the
synthesis side is computed.

R(z)E(z) = cz−n0I, (17)

where c ∈ R, n0 ∈ Z, and I is 3 × 3 identity matrix. From
R(z) and (6), updated filter Fnew1 (z) of the rational wavelet
is computed. This completes the predict stage.

3.1.2. Update Stage

Next, the update stage filter S(z) shown in Fig.5 is learned.
Again, rate converter, shown in Fig.5 as proposed in [13],
is required. The reconstructed signal at the upper branch is
shown as xu[n]. Since the natural images are generally rich
in low frequency content, xu[n] should be as close as possi-
ble to the input signal x[n]. This allows us to learn the update
stage filter by minimizing the energy difference of the two
signals as below:

s̃ = min
s
||x− xu||2, (18)

where s ≡ S(z) = s0 + s1z
−2. Signal xu can be written

in terms of update stage filter s that allows us to solve (18).
Once S(z) is learned, analysis lowpass filter is updated as:

Gnewl (z) = Gl(z) +Gh(z
2)S(z3) (19)

Synthesis highpass filter is updated using the method similar
to the one used to update the synthesis lowpass filter. This
completes the proposed learning. Since the lifting framework
is modular, more predict and update stages can be appended to
get longer length filterbanks. This is to note that for learning
the RWT for the column space of natural images, we vector-
ized an ensemble of natural images column-wise and stacked
them below each other to build a 1-D signal. Next, we esti-
mate the Hurst exponent H of this column vector and learn
the RWT as presented above.

3.2. Proposed Design for the Row Space
Corresponding to the row-space design, we vectorize all im-
ages row-wise and stack them to build a 1-D signal. Next, we
estimate the Hurst exponent H of this row vector and learn the
RWT using the method presented in the previous sub-section.
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Img1 Img2 Img3 Img4 Img5 Img6 Img7 Img8 Img9 Img10 Img11
Fig. 6: Images used in the experiment. Img1 to Img10 were used to design the matched rational wavelet system and the performance in CS

reconstruction is tested on images Img1, Img4 and Img11.
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(a) Low pass filter
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(b) High pass filter
Fig. 7: Frequency response of analysis side filters matched to the

column space of natural images.

4. APPLICATION

The proposed RWLS method is applied on natural images as
separable wavelets. The performance of the learned RWLS is
compared with standard bi-orthogonal 5/3 and 9/7 wavelets in
the application of compressive sensing based reconstruction
of natural images of dimension 512 × 512. An ensemble of
ten natural images shown in Fig. 6 is considered for learning
the statistically matched rational wavelet structure for the row
space and the column space of images. The value of Hurst
exponent is observed to be between 0.5 to 1.0 for all the ten
images considered. Fig. 7 shows the frequency response of
the analysis side lowpass and highpass filters matched to the
column space of natural images.

Bernoulli measurement matrix with entries taken as ±1
is considered in CS. Since it is computationally expensive to
apply CS on big images, we use the concept of block CS
[23], where block-size of 32 × 32 is considered. Recently,
multilevel wavelet decomposition has been proposed over L-
shaped pyramid (L-Pyramid) (Fig. 8b) in [24] and is observed
to perform better in CS application compared to the existing
multilevel regular pyramid (R-Pyramid) wavelet decomposi-
tion (Fig. 8a). We decompose our input images to 3-level
using this new L-Pyramid wavelet decomposition in our ex-
periments. Table-I presents reconstruction results in terms of
PSNR (peak signal to noise ratio) for sampling ratios varying
from 90% to 30%, where sampling ratio is the percentage of
total samples measured.

From Table-1, we note that the performance of the pro-
posed RWLS is superior (comparable at 90% for Img1 and
Img4) to standard wavelets on natural images. Although im-
age ‘Img11’ was not used in the ensemble of images used to

Table 1: CS based reconstruction results of natural images 

Image Wavelet 

PSNR (in dB) over different 

sampling ratios 

90% 70% 50% 30% 

Img1 

5/3 34.83 31.22 26.94 22.13 

9/7 35.30 32.86 29.54 25.44 

RWLS 34.86 33.37 30.82 26.55 

Img4 

5/3 38.83 35.38 31.46 27.18 

9/7 39.36 36.78 33.35 29.53 

RWLS 39.07 37.11 34.58 30.63 

Img11 

5/3 39.51 37.41 33.57 27.48 

9/7 39.74 38.59 35.66 30.97 

RWLS 40.24 39.50 37.44 32.63 
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Fig. 8: 3-level Wavelet Decomposition
Notations for (b): First Letter- wavelet band of columns (Lowpass

or Highpass); Second Letter-wavelet band of rows (Lowpass or
Highpass); Subscripts 1, 2, and 3 denote the number of times

wavelet has been applied on that row/column

learn the RWT, the performance of the learned RWLS over
this image is also superior indicating that the proposed learn-
ing indeed provides the statistically-matched rational system
for the class of natural images.

5. CONCLUSION
Statistical learning for rational wavelet transform (RWLS)
method for natural images is presented in this work. The
natural images are modeled as fBm processes and their sta-
tistical properties are used to learn separable rational wavelet
transform. Lifting framework for the rational wavelet is used
in the proposed work that provides closed-form solution for
learning making the method computationally efficient. The
learned rational wavelet transform is tested in the applica-
tion of CS based reconstruction of natural images and is
observed to perform better compared to the existing standard
bi-orthogonal wavelet transforms.
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