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ABSTRACT

Convolutional sparse representations allow modeling an entire im-
age as an alternative to the more common independent patch-based
formulations. Although many approaches have been proposed to ef-
ficiently solve the convolutional dictionary learning (CDL) problem,
their computational performance is constrained by the dictionary up-
date stage. In this work, we include two improvements to existing
methods (i) a dictionary update based on Accelerated Proximal Gra-
dient (APG) approach computed in the frequency domain and (ii)
a new update model reminiscent of the Block Gauss Seidel (BGS)
method. Our experimental results show that both improvements pro-
vide a significant speedup with respect to the state-of-the-art meth-
ods. In addition, dictionaries learned by our proposed method yield
matching performance in terms of reconstruction and sparsity met-
rics in a denoising task.

Index Terms— Convolutional Dictionary Learning, Convolu-
tional Sparse Representation, FISTA, APG

1. INTRODUCTION

Sparse representations (SR) [1],[2],[3] are well-known techniques
that have led to outstanding results for a broad range of signal and
image processing tasks, and computer vision applications. In the
past 5 years, their convolutional form [4],[5] has received increased
attention, since it overcomes the patch-based drawbacks of redun-
dancy by modeling the entire signal as a sum over a set of convo-
lutions between coefficient maps and their corresponding dictionary
filters. In particular, the standard convolutional formulation of dic-
tionary learning is an extension of Convolutional Basis Pursuit De-
noising (CBPDN) defined as

arg min
{xk,m},{dm}

1

2

∑
k

∥∥∥∑
m

dm ∗ xk,m − sk
∥∥∥2
2
+ λ

∑
k

∑
m

‖xk,m‖1

s.t. ‖dm‖2 = 1 ∀m , (1)

where {xk,m} represents the sets of coefficient maps, {dm} a set
of dictionary filters, {sk} the training images and λ is the regular-
ization parameter of sparsity. The constraint on the norms of the
filters is required to avoid the scaling ambiguity between filters and
coefficient maps.

Recently, several effective algorithms [5],[6],[7] based on the
Alternating Direction Method of Multipliers (ADMM) framework
have been proposed to deal with the most computationally demand-
ing linear system of the dictionary update in the frequency domain.
While the aforementioned system has closed-form solution, which
can be directly solved via either matrix inversion techniques or con-
jugate gradient method in each outer-loop, it can also be computa-
tionally expensive.

In this paper, we incorporate two particular contributions on the
standard CDL approaches that substantially improve runtime perfor-
mance. First, we extend the use of an efficient APG-based solution
partially computed in the frequency domain, previously introduced
in [5] only for the sparse coding (SC) sub-problem (2) to both sub-
problems of CDL. Secondly, we describe a new update model in-
spired on the Block Gauss Seidel (BGS) method [8], which enables
the computation of partial sets of coefficient maps during each sparse
coding stage.

Our experimental results (see Section 4) show that the proposed
APG-based algorithm for CDL problem, when using 10 to 40 train-
ing images, is about 2.2 to 5.3 times faster than the Iterated Sherman
Morrison solution [5], about 2.5 times faster than the Conjugate Gra-
dient solution [5]; and about 1.5 times faster than the Consensus so-
lution [7]. The proposed BGS-inspired update model applied in our
algorithm increases its speed up by a factor of 1.6 and 2.5 times using
2 and 5 partitions respectively. Furthermore, the dictionaries learned
by our method provide equivalent performance as those learned by
other leading methods when applied to the denoising task.

2. PREVIOUS RELATED WORK

The convolutional dictionary learning (1) is a non-convex problem
when being simultaneously evaluated in both variables {xk,m} and
{dm}, but it becomes convex in either variable when keeping the
other one constant. This latter form is usually handled by an alter-
nating approach between both sub-problems: sparse coding (coeffi-
cient update) and dictionary learning (dictionary update). This sec-
tion will explain in more details these sub-problems and the existing
methods used to deal with them.

2.1. Convolutional sparse coding

Considering a single observed image {s}, the most common formu-
lation of the CSC problem is posed as

arg min
{xm}

1

2
‖
∑
m

dm ∗ xm − s‖22 + λ
∑
m

‖xm‖1 . (2)

Early approaches such as Iterative Shrinkage-Thresholding al-
gorithm (ISTA) [9] and its accelerated version (FISTA) [10] ad-
dressed (2) in the spatial domain. Due to the high complexity associ-
ated to the convolution operations, [11] proposed a direct derivation
of the CDL problem (1) based on Augmented Lagrangian frame-
work, in which the most computationally expensive linear system of
each sub-problems were carried out in the frequency domain. [6]
and [12] later improved the SC stage via particular arrangements of
the linear system derived from an ADMM model, along with matrix
inversion methods.
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2.2. Dictionary learning

The convolutional variant of the Method of Optimal Direction
[9],[13] is one of the most widely used formulations for the dic-
tionary learning sub-problem, which can be partially solved in the
frequency by rewriting it in a constrained form

arg min
{dm}

1

2

∑
k

∥∥∥∑
m

xk,m ∗ dm − sk
∥∥∥2
2

s.t dm ∈ CPN , (3)

where CPN is the constraint set for an adequate spatial support and
normalized dictionary. Denoting iCPN as the indicator function of
the set CPN , its unconstrained derivation is given by

arg min
{dm}

1

2

∑
k

∥∥∥∑
m

xk,m ∗ dm − sk
∥∥∥2
2
+
∑
m

iCPN (dm) . (4)

Unlike [11] (presented in Section 2.1), [5] proposed an alterna-
tive approach to solved the expensive linear system of the dictionary
stage (4) using either Iterated Sherman Morisson (ISM) or Gradient
Conjugate (GC). [6] redefined this sub-problem (4) in consensus-
ADMM (CSS) and 3D forms to decouple the solution across the
number of images, later the convergence rate were improved by [7].
Furthermore, [14],[15] presented online learning methods to reduce
the use of resources. During the development of this work, [16] in-
dependently extended an APG-based solution (called in that work
as FISTA-based) for the DL problem, in which only the gradient is
computed in the frequency domain.

3. PROPOSED METHODS

3.1. Frequency domain APG

As we mentioned in Section 1 we approach the standard CDL prob-
lem (1) by using the APG framework. We have heuristically ob-
served that the most suitable way to handle both updates of this
problem is to use APG in both cases, since this combination showed
to deliver better runtime performance with similar convergence rate
in compassion to ADMM-APG combinations. Due to space con-
straints, we do not report this comparison in the present work 1 and
focus mainly on explaining the proposed dictionary update formu-
lation. However, the coefficient update (I) of Algorithm 1 can be
derived by following an analogous chain of derivation as described
here for the dictionary update (II).

The standard APG-based solution presented in the Algorithm 1
is composed by a gradient step, proximal operator, step size calcula-
tion and Nesterov’s accelerated gradient calculation, most of which
are computationally demanding if computed in the spatial domain.
Due to this fact, we propose to perform most of these steps in the
frequency domain, keeping only the proximal operator in the spa-
tial domain, to avoid unnecessary convolutions or transformations
between both domains.

To address the gradient of the fidelity term (4), labeled ∇F , in
the frequency domain, we define a linear operator of Xk,m such that
Xk,mdm = xk,m ∗ dm and denote Xk,m, dm and sk in the DFT
domain as X̂k,m (diagonal matrix), d̂m and ŝk (column vectors) re-
spectively. The fidelity term is arranged as

1

2

∑
k

∥∥∥∑
m

X̂k,md̂m − ŝk
∥∥∥2
2

=
1

2

∑
k

∥∥∥X̂kdf − ŝk∥∥∥2
2

=
1

2

∥∥∥Xfdf − sf∥∥∥2
2

, (5)

1The set of experiments on this pair of update combinations is available
on [17]

where X̂k = (X̂k,1 X̂k,2 · · · ), Xf = (X̂1 X̂2 · · · )T ,

df = (d̂1 d̂2 · · · )T and sf = (ŝ1 ŝ2 · · · )T .

The inexact line search as back-tracking [18],[19] is a customary
option since the exact search [20],[21] line could be computationally
prohibitive. However, in the frequency domain, an exact line search
can be effectively perform via (6).

arg min
{ρ}

1

2

∥∥∥Xf (df − ρ∇F(gf ))− sf∥∥∥2
2

, (6)

where its solution yields a single step size for the dictionary update
and K values for the coefficient update in case of analogous ap-
proach.

A normalization of the auxiliary dictionary is required to avoid
the scaling ambiguities when it is passed to the other sub-problem.
Using Parseval’s theorem, we extend this normalization to the fre-
quency domain (‖gf‖2/

√
N = 1, where N is the number of pixels).

Algorithm 1: Frequency domain APG

for k = 1 : maxIter do
• Coefficient update (I):

1: Compute Xk+1
f via the frequency domain

APG approach.
• Dictionary update (II) :

2: Compute gradient in the frequency domain
∇F (gkf ) = (Xk+1

f )H(Xk+1
f gkf − sf )

3: Compute step size in the frequency domain
ρ = ‖∇F (gkf )‖22/‖Xk+1

f ∇F (gkf )‖22
4: Compute dictionary

hk+1 = IFFT2{gkf − ρ · ∇F (gkf )}
dk+1 = proxiCPN

(hk+1)

dk+1
f = FFT2{dk+1}

5: Compute auxiliary dictionary gk+1
f (Nesterov

accelerated method) in the frequency domain
γk+1 = (1 +

√
1 + 4(γk+1)2)

gk+1
f = dk+1

f + γk−1

γk+1 (d
k+1
f − dkf )

6: Compute normalization of auxiliary dictionary
gk+1
f =

√
N · gk+1

f /‖gk+1
f ‖2

3.2. Partial update model

Given an efficient dictionary update implementation (as proposed in
Section 3.1), we noted that the coefficient update becomes the dom-
inant part of the whole CDL problem. With this in mind, we explore
a new update model inspired by BGS method [8] (a.k.a Alternat-
ing Optimization [22]) which raises the minimization problem for a
given function f(x) as

xk+1
i = arg min

y∈xi
f(xk+1

1 , · · · , xk+1
i−1 , y, x

k+1
i+1 , · · · , x

k+1
r ) ,

(7)
where the optimization is performed for a single partition of the in-
terest variable by keeping the other partitions fixed.

Extrapolating this form in the CDL problem, we split the data
set {sk} into R partitions

sk = {s(1)k , s
(2)
k , . . . , s

(R)
k }
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and define the variables r = {1, . . . , R} and k = {1, . . . , Pr},
where Pr is the partition size. The full SC problem (2) of CDL can
be written as

x
(i,r)
k,m = arg min

{xk,m}

1

2

Pr∑
k=1

∥∥∥∑
m

dm∗xk,m−s(r)k
∥∥∥2
2
+λ

Pr∑
k=1

∑
m

‖xk,m‖1

(8)
where a single partition of coefficient maps is estimated in each
outer-loop of the CDL problem. After computing the current partial
set x(i,r)k,m , the complete variable of coefficient maps xk,m is com-
posed from the current estimated partition and its previous values of
the other partitions.

x
(i)
k,m = [x

(i−1,1)
k,m , . . . , x

(i,r)
k,m , . . . , x

(i−1,R)
k,m ] (9)

This complete set of coefficient maps is used to estimate the
current dictionary given by (4), reproduced here for convenience.

d(i)m = arg min
{dm}

1

2

∑
k

∥∥∥∑
m

x
(i)
k,m∗d

(i−1)
m −sk

∥∥∥2
2
+
∑
m

iCPN (d(i−1)
m )

At the end of each outer-loop the variable r is reassigned as (r +
1)mod R to periodically switch from the first to the last partition.

As this is a generic structure, it could be applied to any CDL
framework to solve each subproblem. However, we choose to merge
this model with our APG-based solution, since in the Section 4, we
show that our APG algorithm is computationally more efficient than
the other approaches.

4. RESULTS

4.1. Experimental framework

We present two distinct set of experiments that were carried out us-
ing MATLAB R2014b running on an Desktop computer with Intel
i7-7700K CPU (4.20 GHz, 8MB Cache, 32GB RAM).

We first compare the computational performance of our method
with respect to the standard CDL algorithms using different sets of
training and validation images. The training sets consist of 10, 20,
30 and 40 gray-scale images of size 256 × 256 pixels, cropped and
rescaled from a set of images obtained from Flickr. The validation
set is 5 images with similar characteristics as the other mentioned
sets, that were not used during the training. Furthermore, 32 filters
of size 12×12 were learned for each set of 10, 20 and 40 training im-
ages using the sparsity parameter λ = 0.2 and 1000 fixed iterations.
For the values of the validation graphs, we saved the dictionaries
at each iteration while training and used them to solve the CBPDN
problem until converge for λ = 0.2 and stored the obtained functional
value.

We then evaluate the performance in terms of PSNR, SSIM and
sparsity metrics 2 of the previously learned dictionaries (of size 12×
12 × 32, learned from 40 training images) solving the SC problem
(2) using the ADMM-based MATLAB algorithm of the SPORCO
library [23]. The testing set includes 4 standard gray-scale images
such as Mandrill, Barbara, Lena and Peppers, that were corrupted
with AWGN level σ = 0.2. Since CBPDN has an adjustable pa-
rameter λ, in order to present fair comparisons, we used a search
grid over λ ∈ [0.05 - 0.95] to find the optimal value that provides
the best PSNR and its corresponding SSIM and sparsity for each
learned dictionary.

2Sparsity measure is defined as 100 · ‖x‖0/N , where x is the coefficient
maps and N is the number of pixel in a test image.

The CDL algorithms used in our experiments are the following:
◦ Iterated Sherman-Morrison (ISM) and Conjugate Gradient
(CG): The CDL algorithms proposed in [5].
◦ ADMM Consensus (CSS): The CDL algorithm proposed in [7].
◦ PU-FISTA: Our proposed APG-based algorithm with partial up-
date structure (code available on [17]). It’s worth noting that PU-
FISTA solution with a single partition is equivalent to using the
APG-based method proposed in Section 3.1 without any partial up-
date model.

Since each outer-loop updates a single partition of the coefficient
maps, this affect the l1-term when computing the functional value
(FV) of the training set, making this an unsuitable convergence ref-
erence. A fair comparison of the functional value would be with the
validation set.

4.2. Simulations of the learning

We show in Figure 1, the performance of the existing CDL methods
(ISM, CG and CSS) along with our proposed method in terms of
functional values of (1) with respect to the learning runtime, using
10 and 20 training images. We observe that in both cases, all meth-
ods converge to similar values with distinct runtimes and behaviors.
Our proposed method outperforms the rest by achieving the same
functional value in less time (at the beginning ISM has a relatively
better convergence ratio for 10 training images).
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Fig. 1: A comparison on the set of 10 and 20 training images of the
functional value decay with respect to execution time for the DCL
methods.
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Fig. 2: A comparison of the value decay of the training and valida-
tion functional with respect to execution time for the DCL methods
on a set of 40 training images.
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We report in Figure 2 the same comparisons as in Figure 1, but
for a larger set of training images (40 images). It also includes the
progress of the functional value in the validation set in order to ob-
serve the generalization of the estimated dictionary with respect to
the training runtime. We note that while the number of training im-
ages becomes larger our APG algorithm consistently outperforms
the other ones in terms of runtime and functional value. Further-
more, we can see in Figure 2.b the same pattern including that our
method provides similar generalization.
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Fig. 3: A comparison of the value decay of validation functional
respect to execution time for the set of 20 and 40 training images on
our proposed method with 1, 2 and 5 partitions.

In Figure 3, we present the comparison of our APG-based algo-
rithm with partial update structure for 1, 2 and 5 partitions. As can be
observed the PU-FISTA with a single partition achieves a lower point
of convergence, which indicates that its learned dictionaries must be
better at generalizing testing set. Although PU-FISTA with 2 parti-
tions achieve a slightly higher point of convergence, it is reached in a
less execution time. On the other hand, PU-FISTA with 5 partitions
is faster, but it needs more iterations to converge while the image set
becomes larger.
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Fig. 4: A Comparison of execution time per iteration for the CDL
methods for sets of 10, 20, 30 and 40 training images.

In Figure 4, we report mean runtime per iteration of the CDL
methods during the learning with respect to the number of training
images. Our proposed methods provides better runtime per itera-
tion in comparison to the other ones. As additional information of
the Figure 4, we present in Table 1 the values of runtime. In this
table, we note that our proposed AGP algorithm (PU-FISTA-1P),

Table 1: Execution time (seconds) of the CDL methods for sets of
10 and 40 training images

Image
Set ISM GS CSS PU-FISTA

1P
PU-FISTA

2P
PU-FISTA

5P
10 2222 2993 1475 1015 678 439
40 21051 9343 5866 4003 2504 1668

when using 10 to 40 training images, is about 2.2 to 5.3 times faster
than ISM, about 2.5 times faster than the CG; and about 1.5 times
faster than CSS. The proposed update model applied in our algo-
rithm provides an additional improvement of 1.6 and 2.5 times in
the computational performance using 2 partitions and 5 partitions.

4.3. Simulations of denoising task

The Table 2 and 3 present the performance of the learned dictionary
in terms PSNR, SSIM and sparsity metrics. In both tables, we ob-
serve that the dictionaries learned by our proposed algorithm yield
equivalent results as the existing methods, since their differences in
PSNR, SSIM and sparsity are negligible.

Table 2: Denoising of Barbara and Mandrill images corrupted with
AWGN level σ = 0.2

Mandrill Barbara
Dictionary

(12× 12× 32) PSNR SSIM Sparsity
(%) PSNR SSIM Sparsity

(%)
ISM 21.08 0.5286 7.46 23.15 0.6091 5.68
GC 21.08 0.5282 7.48 23.15 0.6091 5.69
CSS 21.09 0.5293 7.63 23.14 0.6082 5.73

PU-FISTA 1p 21.08 0.5293 7.43 23.15 0.6093 5.61
PU-FISTA 2p 21.08 0.5293 7.38 23.11 0.6084 5.56
PU-FISTA 5p 21.08 0.5280 7.38 23.08 0.6076 5.57

Table 3: Denoising of Lena and Peppers images corrupted with
AWGN level σ = 0.2

Lena Peppers
Dictionary

(12× 12× 32) PSNR SSIM Sparsity
(%) PSNR SSIM Sparsity

(%)
ISM 25.36 0.6818 1.58 25.17 0.6741 1.52
GC 25.35 0.6816 1.60 25.17 0.6739 1.51
CSS 25.34 0.6805 1.58 25.15 0.6738 1.51

PU-FISTA 1p 25.36 0.6829 1.55 25.17 0.6745 1.49
PU-FISTA 2p 25.37 0.6834 1.53 25.17 0.6749 1.46
PU-FISTA 5p 25.34 0.6825 1.57 25.15 0.6746 1.48

5. CONCLUSION

We have proposed a computationally efficient algorithm to solve the
convolutional dictionary learning problem considering two comple-
mentary formulations. Our first contribution has consisted of an
APG-based solution for both CDL subproblems that has proved to be
significantly faster than state-of-the-art methods. The second contri-
bution has been an update model, which has enabled to reduce the
computations in our sparse coding update. The dictionaries learned
by our proposed method have showed equivalent performance in
terms of PSNR, SSIM and sparsity metrics as the existing methods
in a denoising task while the training runtime has been improved
substantially.
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