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ABSTRACT

In recent years there is a growing interest in operating on
graph signals. One systematic and productive such line of
work is incorporating sparsity-inspired models to this data
type, offering these signals a description as sparse linear com-
binations of atoms from a given dictionary. In this paper, we
propose a dictionary learning algorithm for this task that is
capable of handling high dimensional data. We incorporate
the underlying graph topology by forcing the learned dictio-
nary atoms to be sparse combinations of graph wavelet func-
tions. The resulting atoms thus adhere to the underlying graph
structure and possess a desired multi-scale property, yet they
capture the prominent features of the data of interest. This
results in both adaptive representations and an efficient im-
plementation. Experimental results on different datasets, rep-
resenting both synthetic and real network data, demonstrate
the effectiveness of the proposed algorithm for graph signal
processing.

Index Terms— Sparse representation, dictionary learn-
ing, graph signal processing, graph Laplacian, double-sparsity,
graph wavelets.

1. INTRODUCTION

Numerous modern applications introduce signals having an
underlying complicated geometric topology, which could be
represented using a graph structure. Examples of such signals
can be found in applications of transportation, energy, social
or sensor networks [1]. In these applications, the vertices (or
nodes) of the graph represent the discrete data domain, and
the edge weights reflect the pairwise similarity between these
vertices. A graph signal is a function that resides on the graph,
assigning a real value to each vertex.

Given a weighted graph and a class of signals residing
on it, we would like to construct an overcomplete dictionary
such that the given graph signals can be well approximated as
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linear combinations of only a few atoms from this dictionary.
Naturally, when designing dictionaries for graph signals, an
additional challenge is exploiting prior knowledge of the in-
trinsic underlying topology of the data.

In recent years, different directions have been taken in an
attempt to design dictionaries for graph signals. Similarly to
signals on the Euclidean domain, the choice of a dictionary
often involves a tradeoff between analytic dictionaries, which
are efficient to construct and apply, and dictionary learning
methods, that are more adaptable, training the dictionary us-
ing a given set of signal realizations.

Various analytic dictionaries for graph signals have been
proposed, generalizing transform-based dictionaries from the
Euclidean domain to the graph settings. These include the
graph Fourier transform [2], windowed graph Fourier trans-
form [3], diffusion wavelets [4], and spectral graph wavelets
[5], among others. Such methods offer efficient implementa-
tions while also accounting for the underlying topology, yet
they are not adapted to the signals themselves.

The alternative approach of dictionary learning methods,
e.g. the MOD [6] and K-SVD [7], do adapt to the data by
training the dictionary using a given set of signal realizations.
Assuming sufficient training signals are provided, these meth-
ods are able to detect the most important characteristics of
the data. However, they do not explicitly incorporate the non-
Euclidean underlying topology of the data domain.

Generalizing these methods to the graph setting, we have
recently proposed a dual graph regularized dictionary learn-
ing algorithm (DGRDL) [8], enjoying both worlds. This al-
gorithm incorporates the graph structure into the dictionary
learning framework by introducing graph constraints in both
the signal and manifold domains. Furthermore, the proposed
scheme suggests the additional ability of learning the graph
topology along with the dictionary in cases where this struc-
ture is not given.

Though exhibiting impressive performance, DGRDL is
mostly suited for moderate size graphs. As data dimensions
keep growing, this method becomes gradually cumbersome,
both because of the induced size of the dictionary and the
graph Laplacian matrix.
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In order to overcome this limitation and operate on much
higher dimensional graph signals, this work proposes infusing
structure into the learned dictionary by harnessing the double
sparsity framework [9, 10]. By modeling the dictionary itself
as the product of an efficient and topology-adapted analytic
base dictionary and an adaptable sparse matrix, we lower the
degrees of freedom of the problem, and with it, the compu-
tational cost of training and applying the dictionary, thus en-
abling treatment of higher dimensional graph signals.

More specifically, we propose to use a Haar wavelet ba-
sis that is adapted to the graph Laplacian, following [11].
As such, the proposed approach benefits from the multi-scale
structure and the topology-awareness that this base dictionary
brings, along with the ability to adapt to the signals. This
approach can be viewed as a fusion of the analytic and the
trainable paradigms.

Indeed, such a bridge between the two choices for get-
ting the dictionary has already been proposed in earlier work
imposing other parametric structures on the learned dictio-
nary. Along this reasoning, Zhang et al. [12] suggest that the
dictionary should be a collection of shift-invariant filters or
sub-dictionaries of form Ds = χΛsχ

T where χ is the eigen-
basis of the graph Laplacian L and Λs � 0 are some diagonal
matrices. Thanou et al. [13] further restrict the dictionary
to a polynomial structure, Ds =

∑K
k=0 αs,kL

k, with addi-
tional constraints imposed in order to control the frequency
behavior of the kernels. However, these techniques as well
are limited in their ability to manage high-dimensional data,
due to their direct use of the graph Laplacian. And so, while
our proposed scheme can also be considered as belonging to
this parametric regime, it offers a way to go beyond the di-
mensionality limitations that all current methods suffer from.

The rest of the paper is organized as follows: We present
our sparse dictionary learning algorithm for graph signals in
Section 2, including a detailed description of the base dic-
tionary construction procedure. We then evaluate the perfor-
mance of the proposed algorithm in Section 3, and conclude
in Section 4.

2. DOUBLE SPARSE DICTIONARY LEARNING FOR
GRAPH SIGNALS

The double sparsity approach [9] is based on a sparsity model
of the dictionary atoms over a base dictionary, i.e. it defines
the dictionary as a product D = ΦA, where Φ is some fixed
(perhaps analytic or structured) base dictionary, and A is a
learned sparse matrix, having P non-zeros per column.

Formally, the dictionary learning problem in this case is
given by

arg min
A,X
‖Y − ΦAX‖2F

s.t. ‖xi‖0 ≤ T ∀i,
‖aj‖0 ≤ P ∀j, ‖Φaj‖2 = 1 ∀j,

(1)

where Y ∈ RN×M is the data matrix containing the train-
ing examples in its columns, X ∈ RK×M contains the cor-
responding sparse representation vectors, Φ ∈ RN×N is the
base dictionary and A ∈ RN×K is a redundant (K > N )
column-wise sparse matrix1. A solution to this problem is
obtained by an alternating optimization over A and X .

The above dictionary, ΦA, has a compact representation
and provides efficient forward and adjoint operators, yet it
can be effectively trained from given data, even when N and
K are large (many thousands and beyond). Therefore, it nat-
urally bridges the gap between analytic dictionaries, which
have efficient implementations yet lack adaptability, and stan-
dard trained dictionaries, which are fully adaptable but non-
efficient and costly to deploy.

We are about to bring this double-sparsity idea to the treat-
ment of graph signals, and we will refer to the resulting algo-
rithm as Sparse Dictionary Learning (SDL). Our approach is
to use the very same setup as defined in Equation (1), and
bring the graph topology into consideration by the choice of
Φ.

The success of SDL heavily depends on a proper choice of
the base dictionary Φ. Incorporating multi-scale properties in
the learned dictionary is a vital property for representing large
signals. In this work, we therefore choose to construct a Haar-
like graph wavelet basis inspired by [11]. As an initial step,
the underlying graph should be converted to a hierarchical
tree by spectral partitioning.

Spectral graph partitioning methods are based on the
Fiedler vector [14], which is the eigenvector corresponding
to the smallest non-zero eigenvalue of the graph Laplacian
matrix L. The Fiedler vector bisects the graph into two dis-
joint sets of nodes based on the sign of the corresponding
vector entry. By applying the spectral bisection procedure
recursively, full partitioning is obtained and the graph can
be encoded as a hierarchical tree [15]. We note that the
Fiedler vector itself may be efficiently computed using the
Lanczos algorithm [16], without having to compute the full
eigen-decomposition of L.

Equipped with a tree representation of the given data, we
can now construct an orthonormal Haar-like wavelet basis in
the spirit of the method proposed in [11], which will serve
as our base dictionary Φ. Not only is Φ orthogonal by con-
struction, the data geometry encapsulated by it is captured
by a hierarchical tree of increasingly refined partitions. This
achieves the desired multi-scale property of the basis func-
tions, and consequently manifested as localization over the
graph of their sparse linear combinations, which are the atoms
of the dictionary D = ΦA.

Furthermore, we emphasize that due to the sparsity of A,
SDL requires a training of far less parameters than classic dic-
tionary learning methods, hence learning in this case is feasi-

1Note that the double-sparsity framework allows flexibility in the di-
mensions of Φ and A and it is not generally necessary for Φ to be square.
Nonetheless, we here choose to use an orthogonal transform.
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ble even given limited training data, or truly high dimensions.

3. EXPERIMENTS AND APPLICATIONS

In this section, we demonstrate the effectiveness of the pro-
posed SDL method on synthetic examples and on real net-
work data and show its potential use in data analysis applica-
tions of different dimensions.

3.1. Synthetic Experiment

We first describe an experiment on synthetic signals, similar
to the one described in [8]. For this purpose, we generated a
random graph consisting of N nodes randomly drawn from
a uniform distribution. The edge weights between each pair
of nodes were determined based on the Euclidean distances
between them and using the Gaussian Radial Basis Function
(RBF) Wij = exp

(
−d2(i,j)

2σ2

)
with σ = 0.5.

A randomly drawn data matrix Y0 ∈ RN×10N was made
smooth over the resulting graph Laplacian by solving

arg min
Y
‖Y − Y0‖2F + λTr(Y TLY ), (2)

yielding Y = (I + λL)
−1
Y0. Consequently, each signal was

normalized to have unit norm. A subset of 40% of the gener-
ated signals were used for training and the rest for testing.

Using this data, several dictionaries were trained includ-
ing the K-SVD [7], the graph Polynomial dictionary [13],
DGRDL [8] and the proposed SDL with a graph Haar-like
base dictionary. For a fair comparison, all these dictionaries
are of the same size, N × 2N . We also evaluated a direct
use of the graph wavelet basis Φ (serving as a base dictio-
nary for SDL), whose size is N × N . The dictionaries were
compared by their ability to obtain the best m-term approxi-
mation of the test data (for different sparsity levels), and per-
formance was measured in terms of the normalized RMSE,

1√
NM
‖Y −DX‖F .

The above described experiment was repeated for two dif-
ferent setups: the first with a moderate size graph ofN = 256
nodes, and the second with a high-dimensional graph contain-
ing N = 4096 nodes. The dictionaries were trained with a
fixed number of non-zeros in the sparse coding stage (T = 12
and T = 25, respectively). For SDL, the respective sparsity
levels of the dictionary A were set to P = 12 and P = 40.

The representation errors presented in Figure 1a show that
for a moderate size graph, the proposed SDL yields lower er-
rors compared with K-SVD, the Polynomial method and the
graph wavelets, and is almost as good as DGRDL while be-
ing significantly faster and more efficient. For this setup, the
training process for SDL and K-SVD converged in just a few
seconds, compared with several minutes for the Polynomial
dictionary and DGRDL.

The representation errors obtained for a large graph set-
ting are presented in Figure 1b, demonstrating the scalability

of the proposed SDL method to high dimensional data. For
this data dimension, the Polynomial dictionary and DGRDL
can no longer train in reasonable time, and were therefore
omitted from the comparison. Nevertheless, SDL still outper-
forms K-SVD and the graph wavelet base dictionary Φ.

Number of atoms used in the representation
0 5 10 15

R
M

S
E

0.03

0.035

0.04

0.045

0.05

0.055

0.06
Representation Error

KSVD
Polynomial
DGRDL
SDL
Φ

(a) N = 256

Number of atoms used in the representation
0 5 10 15 20 25 30 35 40 45 50

R
M

S
E

0.013

0.0135

0.014

0.0145

0.015

0.0155

0.016
Representation Error

KSVD
SDL
Φ

(b) N = 4096

Fig. 1: Comparison of the learned dictionaries in terms of
normalized RMSE for representing synthetic data of different
dimensions with various sparsity levels.

3.2. Traffic Network Data

Next, the proposed method was evaluated on real network
data from the PeMS database [17]. The dataset consists of
2863 signals, representing the daily traffic loads measured
at N = 578 predefined locations across the highways in
Alameda County, California, between 2007 and 2014. All
signals were normalized with respect to the one having the
maximal energy. A random subset of 1400 signals constitutes
the training set, and the rest are used for testing.
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The initial graph Laplacian Lwas designed by connecting
stations whose distance (in terms of the Euclidean distance
between the GPS coordinates of the stations) is smaller than
13 kilometers and the edge weights are set to be inversely
proportional to the distance.

The proposed SDL approach was again compared with K-
SVD [7], the graph Polynomial dictionary [13] and DGRDL
[8]. All evaluated dictionaries are of the same size ofN×2N
and a sparsity threshold of T = 6 was used for training.

The different methods are evaluated on two tasks. We
start by evaluating their ability to sparsely represent the test
set data with different sparsity levels (number of used atoms).
Next, we evaluate their performance for the common signal
denoising problem, by adding Gaussian noise of different lev-
els σn to the test signals and comparing recovery using each
of the dictionaries in terms of the normalized Root Mean
Squared Error (RMSE). Assuming each noisy test signal is
modeled as yi = ΦAxi + ni where ni denotes the added
noise, the denoised signal ŷi = ΦAx̂i is obtained by seek-
ing the sparse approximation of the noisy test signals with a
known sparsity level of T = 6.

The representation errors for this experiment are pre-
sented in Figure 2a, and the corresponding denoising errors in
Figure 2b. It can be observed that in both tasks, for all sparsity
levels and all noise levels tested, the proposed sparse dictio-
nary (SDL) yields significantly lower errors compared with
K-SVD and the Polynomial graph dictionary, and is almost as
good as DGRDL. These results coincide with those obtained
for the synthetic experiment. Recall, however, that DGRDL
is much more complex and its runtime is significantly longer,
making its use impractical for larger dimensions.

It should be emphasized again that the performance of
SDL compared with K-SVD is expected to further improve
as the training set becomes scarce. Furthermore, the results
could be improved by re-training the dictionaries for every
sparsity level. Instead, training was performed once for a
fixed T and the generalization ability of the resulting dic-
tionaries was challenged by evaluating them using different
(both smaller and larger) sparsity levels. Nevertheless, as the
experimental results demonstrate, the trained model fits the
data well even in this setting.

4. CONCLUSIONS

This work presented an efficient way for handling high di-
mensional graph signals, going beyond the data sizes previ-
ously handled in sparsity based graph signal processing. At
the core of the proposed dictionary learning algorithm stands
a simple graph wavelet transform, possessing several desired
properties: (i) a multi-scale nature that we deem vital for
representing large signals, (ii) orthogonality and ease of con-
struction, and (iii) adhering to the graph topology underlying
the data.

Number of atoms used in the representation
5 10 15 20 25

R
M

S
E

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016
Representation Error

KSVD
Polynomial
DGRDL
SDL

(a)

σ
n
/σ

d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
M

S
E

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016
Denoising Error

KSVD
Polynomial
DGRDL
SDL

(b)

Fig. 2: Comparison of the learned dictionaries in terms of nor-
malized RMSE for different applications tested on the traffic
dataset: (a) representation error for different sparsity levels,
(b) denoising error for different noise levels σn (with respect
to the data STD σd).

Employing this as the base dictionary within a double
sparsity model adds flexibility and allows adapting the dictio-
nary to the given data without compromising these properties.

As demonstrated through experiments on both synthetic
and real data, the proposed SDL algorithm achieves superior
performance to other tested methods. Moreover, it is able to
take into account the underlying graph structure while retain-
ing computational efficiency. This method is therefore suit-
able for much larger graphs for which DGRDL [8], the Poly-
nomial dictionary [13] or even the structure agnostic K-SVD
[7] collapse. As such, SDL opens the door to new challenges
and problems that remained unattainable until now.
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