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Abstract—In Compressive Sensing (CS) of sparse signals, standard `1-
minimization can be effectively replaced with Weighted `1-minimization
(W`1) if some information about the signal or its sparsity pattern is avail-
able. If no such information is available, Re-Weighted `1-minimization
(ReW`1) can be deployed. ReW`1 solves a series of W`1 problems, and
therefore, its computational complexity is high. An alternative to ReW`1
is the Greedy Pursuits Assisted Basis Pursuit (GPABP) which employs
multiple Greedy Pursuits (GPs) to obtain signal information which in turn
is used to run W`1. Although GPABP is an effective fusion technique,
it adapts a binary weighting strategy for running W`1, which is very
restrictive. In this article, we propose a gradual weighting strategy for
W`1, which handles the signal estimates resulting from multiple GPs
more effectively compared to the binary weighting strategy of GPABP.
The resulting algorithm is termed as Greedy Pursuits assisted Weighted
`1-minimization (GP-W`1). For GP-W`1, we derive the theoretical upper
bound on its reconstruction error. Through simulation results, we show
that the proposed GP-W`1 outperforms ReW`1 and the state-of-the-art
GPABP.

Index Terms—Weighted `1-minimization, greedy pursuits assisted basis
pursuit

I. INTRODUCTION

Compressive Sensing (CS) ensures the reconstruction of a sparse
signal x ∈ Rn from its measurement vector y ∈ Rm of the form
y = Φx + v ∈ Rm, where Φ ∈ Rm×n is a known CS matrix with
m � n and v is the measurement noise [1]-[2]. Let K denote the
signal sparsity level (i.e. there are only K � n significant entries in
x). Typically, m = O(K log(n)) [3]. A sensing matrix Φ is said to
obey the Restricted Isometry Property (RIP) if there exists a constant
δK ∈ [0, 1] satisfying

(1− δK)‖x‖22 ≤ ‖Φx‖
2
2 ≤ (1 + δK)‖x‖22 (1)

for all K-sparse vectors x ∈ Rn. Note that ‖.‖2 stands for the
vector `2-norm. The sparse signal can be reconstructed from y using
CS reconstruction algorithms. They are broadly classified as convex
relaxation methods (such as Basis Pursuit or `1-minimization [4])
and Greedy Pursuit (GP) algorithms (such as Orthogonal Match-
ing Pursuit (OMP) [5], Subspace Pursuit (SP) [6], Iterative Hard
Thresholding (IHT) [7] and Backtracking-based Adaptive Orthogonal
Matching Pursuit (BAOMP) [8]). Among these two classes, GPs
are known for their faster convergence. Applications of CS include
image/video compression [9]-[10], radar echo recovery [11] and ECG
signal reconstruction [12].

Motivation and Relation to Prior Work: In reconstruction of
sparse signals, standard `1-minimization can be effectively replaced
with Weighted `1-minimization (W`1) if some information about
the signal is known apriori [13]-[16]. If no such information is
available, Re-Weighted `1-minimization (ReW`1) can be deployed
[17]. As ReW`1 solves a series of W`1 problems, its complutational
complexity is high [18]. The Greedy Pursuits Assisted Basis Pursuit
(GPABP) algorithm [19], an effective alternative to ReW`1 in no
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prior information scenario, employs multiple GPs to obtain signal
information which in turn is used to run W`1. However, GPABP
adapts a binary weighting strategy to determine the weight vector
for W`1, which is very restrictive [19]-[20]. Given the support
estimates resulting from multiple GPs, a gradual weighting could be
adapted. This article proposes a gradual weighting strategy for W`1,
which handles the signal estimates resulting from multiple GPs more
effectively compared to the binary weighting strategy of GPABP. The
resulting algorithm is termed as Greedy Pursuits assisted Weighted
`1-minimization (GP-W`1).

II. PRIOR WORKS

This section briefly describes W`1, ReW`1 and GPABP. The actual
support of x, T ⊂ {1, 2, ..., n}, is defined as the set of indices i where
x(i) is non-zero. In [13], W`1 was proposed for reconstructing sparse
signals whose prior information is available in the form of partial
support. The partial support, say Tk ⊂ {1, 2, ..., n}, is defined as the
set of indices i where x(i) is estimated to be non-zero. The W`1
problem is formulated as

x̂ = arg min
x̃
‖x̃‖1,w s.t. ‖Φx̃− y‖2 ≤ ε (2)

where x̂ is the reconstructed signal, w ∈ [0, 1]n and ‖x̃‖1,w :=∑
i w(i)|x̃(i)| is the weighted `1 norm with w(i) = ω ∈ [0, 1)

whenever i ∈ Tk, and w(i) = 1 otherwise. Note that, in (2), ε is
the error tolerance (due to the presence of noise in y). A similar
problem to W`1 was reported in [14] but it assumed a probabilistic
prior on the support. If no prior information is available, ReW`1 can
be applied [17]. ReW`1 solves a series of W`1 problems where the
weights for the next iteration (say w(t+1)) are computed from the
value of the current solution (say x̂(t)) as follows,

w(i)(t+1) =
1

|x̂(i)(t)|+ τ
for i = 1, 2, ..., n. (3)

The parameter τ > 0 provides stability. In the initial iteration of
ReW`1, x̂(0) is obtained by solving (2), fixing ω = 1.

The GPABP algorithm [19], tailored specially for the no prior in-

formation scenario, employs multiple GPs to form T̃k as T̃k =
L⋂
i=1

T̂i,

where L is the number of GPs and T̂i is the support set estimated by
the ith GP. Then, T̃k is used to run Modified Basis Pursuit (Mod-BP)
[15] as follows,

x̂ = arg min
x̃
‖x̃T̃c

k
‖

1
s.t. ‖Φx̃− y‖2 ≤ ε (4)

where T̃ ck is the set compliment of T̃k, x̃T̃c
k

is the subset of x̃ formed
by extracting the entries of x̃ corresponding to the indices in T̃ ck
and ‖.‖1 stands for the vector `1-norm. The GPABP algorithm was
shown to outperform fusion-based CS reconstruction algorithms such
as fusion-of-algorithms for CS [21] and committee machine approach
for CS [22].
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Algorithm 1 Proposed GP-W`1

Require: Φ, y, K, L and ε
1: for i=1:L; T̂i = GPi(Φ, y, K); end
2: Weight vector: w′ = [w′(1) w′(2) .... w′(n)] where

w′(i) = 1− Gi
L
, i = 1, 2, ..., n.

3: Obtain x̂ using W`1:

x̂ = arg min
x̃
‖x̃‖1,w′ s.t. ‖Φx̃− y‖2 ≤ ε.

III. PROPOSED WEIGHTING STRATEGY FOR W`1

If no prior signal/support information is available, either ReW`1
or GPABP can be considered. High computational complexity of
ReW`1 is not affordable in many practical scenarios. On the other
hand, GPABP has a limitation: the weighting is only binary (i.e.
ω or 1). In this article, in order to have more number of weights,
we propose a novel weighting strategy which assigns the weight for
each location based on the number of GPs picking that location. This
gradual weighting strategy is expected to give more precise weights
compared to that of the binary weighting strategy. The resulting
algorithm is termed as GP-W`1. Algorithm 1 shows the step-by-step
procedure in GP-W`1. The GP-W`1 algorithm employs L GPs to
obtain T̂i, i = 1, 2, ..., L. The weight corresponding to each location
i is computed as follows,

w′(i) = 1− Gi
L
, i = 1, 2, ..., n, (5)

where Gi is the number of GPs picking the location i. Then, the
weight vector w′ = [w′(1) w′(2) .... w′(n)] is used to obtain x̂ as
follows,

x̂ = arg min
x̃
‖x̃‖1,w′ s.t. ‖Φx̃− y‖2 ≤ ε. (6)

It can be inferred from (5) that, for a location picked by large
number of GPs, the weight will be small. Fig. 1 shows the schematic
of the gradual weighting strategy of GP-W`1. The set, [1, 2, ..., n], is
partitioned into L + 1 disjoint subsets Nl, l ∈ 0, 1, ..., L where Nl
denotes the set of locations picked by exactly l (out of L) GPs. Larger
the l, smaller will be the weight for the subset Nl. Owing to the fact
that the GPs have much lesser computational complexity compared
to that of the W`1, GP-W`1’s computational complexity will be of
the same order as that of the W`1. The fact that the reconstruction
accuracy of GP-W`1 increases with an increase in L can be verified
in section IV.

A. Theoretical Analysis of GP-W`1

The following theorem gives the upper bound on GP-W`1’s
reconstruction error.

Theorem 1: Let x ∈ Rn and let xK be its best K-term approxima-
tion, supported on T . Assume L GPs are used for weights estimation
and let [1, 2, ...., n] be partitioned into L + 1 disjoint subsets Nl,
l ∈ 0, 1, ..., L where Nl mentioned as before denotes the set of
locations picked by exactly l (out of L) algorithms. Suppose that
there exists an a ∈ 1

K
Z that obeys |N1 ∪N2 ∪ ...∪NL| = aK, and

the matrix Φ obeys RIP with

δaK +
a√

1− β′ + a(1− α′)
δ(a+1)K

≤ a√
1− β′ + a(1− α′)

− 1,

for α′ = |(N1∪N2∪....∪NL)∩T |
aK

and β′ = |NL∩T |
K

. Then the solution
x̂ to (6) obeys

‖x̂− x‖2 ≤ D1ε+D2

L−1∑
l=0

wl‖xNl∩Tc‖1,

where D1 and D2 are constants (given in the proof below) that
depend on Φ, a, α′ and β′.

Proof: Let x̂ = x+ h be the minimizer of (6). Then

‖x+ h‖1,w′ ≤ ‖x‖1,w′ .

Moreover, due to the choice of weights (given by (5)),

L∑
l=0

w′(l)‖xNl + hNl‖1 ≤
L∑
l=0

w′(l)‖xNl‖1.

L∑
l=0

w′(l)‖xNl∩T + hNl∩T ‖1 +

L∑
l=0

w′(l)‖xNl∩Tc + hNl∩Tc‖1

≤
L∑
l=0

w′(l)‖xNl∩T ‖1 +

L∑
l=0

w′(l)‖xNl∩Tc‖1.

Using forward and reverse triangle inequalities, the above expression
becomes,
L∑
l=0

w′(l)‖hNl∩Tc‖1 ≤
L∑
l=0

w′(l)‖hNl∩T ‖1+2

L∑
l=0

w′(l)‖xNl∩Tc‖1.

By adding
L∑
l=0

(1− w′(l))‖hNl∩Tc‖1 on both sides,

‖hTc‖1 ≤
L∑
l=0

w′(l)‖hNl∩T ‖1+

L∑
l=0

(1− w′(l))‖hNl∩Tc‖1

+ 2

L∑
l=0

w′(l)‖xNl∩Tc‖1.

Since w′(L) = 1− w′(0) = 0

‖hTc‖1 ≤
L−1∑
l=0

w′(l)‖hNl∩T ‖1+

L∑
l=1

(1− w′(l))‖hNl∩Tc‖1

+ 2

L−1∑
l=0

w′(l)‖xNl∩Tc‖1.

Noting that the weights range from 0 to 1,

‖hTc‖1 ≤‖h(N0∪N1∪...∪NL−1)∩T ‖1

+ ‖h(N1∪N2∪...∪NL)∩Tc‖
1

+ 2

L−1∑
l=0

w′(l)‖xNl∩Tc‖1.

Let T̆ = (T −NL) ∪ (T c −N0). Then,

‖hTc‖1 ≤ ‖hT̆ ‖1 + 2

L−1∑
l=0

w′(l)‖xNl∩Tc‖1. (7)

Let us define two parameters α′ = |(N1∪N2∪....∪NL)∩T |
aK

and β′ =
|NL∩T |
K

such that |T̆ | = (1−β′+a(1−α′))K. Since for a n-length
vector x, ‖x‖1 ≤

√
n‖x‖2,

‖hTc‖1 ≤
√

(1− β′ + a(1− α′))K‖hT̆ ‖2

+ 2

L−1∑
l=0

w′(l)‖xNl∩Tc‖1.
(8)
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Fig. 1: Gradual Weighting Strategy of GP-W`1

As in [13], the coefficients of hTc are sorted in the order of
decreasing magnitude partitioning T c into disjoint sets Tj , j ∈
{1, 2, ...} each of size aK, where a > 1. That is, T1 indexes the
aK largest magnitude coefficients of hTc , T2 indexes the second
aK largest magnitude coefficients of hTc , and so on. This gives

‖hTj‖2 ≤ (aK)−1/2‖hTj−1‖1. (9)

Let T01 = T ∪ T1, then using the triangle inequality in the above
gives

‖hTc
01
‖

2
≤ (aK)−1/2‖hTc‖1. (10)

Since x and x̂ are feasible, ‖Φh‖2 ≤ 2ε and

‖ΦhT01‖2 ≤ 2ε+
∑
j>1

‖ΦhTj‖2 ≤ 2ε+
√

1 + δaK
∑
j>1

‖hTj‖2

where the last inequality follows RIP. Since
∑
j>1

‖hTj‖2 = ‖hTc
01
‖

2
,

using (10) in the above equation gives

‖ΦhT01‖2 ≤ 2ε+

√
1 + δaK√
aK

‖hTc‖1. (11)

Using RIP on the R.H.S. of the above we get√
1− δ(a+1)K‖hT01‖2 ≤ 2ε+

√
1 + δaK√
aK

‖hTc‖1. (12)

Since T1 contains the largest aK coefficients of hTc , ‖hT̆ ‖2 ≤
‖hT01‖2, and therefore (8) becomes

‖hTc‖1 ≤
√

(1− β′ + a(1− α′))K‖hT01‖2

+ 2

L−1∑
l=0

w′(l)‖xNl∩Tc‖1.
(13)

Combining (12) and (13) gives

‖hT01‖2 ≤
2ε+ 2

√
1+δaK√
aK

L−1∑
l=0

w′(l)‖xNl∩Tc‖1√
1− δ(a+1)K −

√
1−β′+a(1−α′)

√
a

.
√

1 + δaK

. (14)

Finally, using the relation ‖h‖2 ≤ ‖hT01‖2 + ‖hTc
01
‖

2
, and

substituting (14), (10) and (13) in it gives

‖h‖2 ≤ D1ε+D2

L−1∑
l=0

w′(l)‖xNl∩Tc‖1 (15)

where the constants

D1 =

2

(
1 +

√
1−β′+a(1−α′)

√
a

)
√

1− δ(a+1)K −
√

1−β′+a(1−α′)
√
a

√
1 + δaK

(16)

and

D2 =
2

√
1−δ(a+1)K+

√
1+δaK√

aK√
1− δ(a+1)K −

√
1−β′+a(1−α′)

√
a

√
1 + δaK

, (17)

with the condition that the denominator is positive, equivalently

δaK+
a√

1− β′ + a(1− α′)
δ(a+1)K

≤ a√
1− β′ + a(1− α′)

− 1. �

Remark 1: If x is exactly sparse (i.e. ‖xNl∩Tc‖1 = 0) and y is
noiseless (i.e. ε = 0), then ‖h‖2 = 0 which implies the reconstruction
is exact.

Remark 2: For theorem 1 to hold, it is sufficient if Φ satisfies

δ(a+1)K <
a− (1− β′ + a(1− α′))
a+ (1− β′ + a(1− α′)) . (18)

Compared to the standard `1-minimization [2] which requires Φ to
satisfy δ(a+1)K < a−1

a+1
, GP-W`1 has a weaker requirement provided

β′ > a(1− α′). (19)

As per the definitions of a, α′, and β′, the above condition holds when
the ingredient GPs in GP-W`1 (i.e., GPi in step 1 of algorithm 1)
estimate the signal support such that

|(N1∪N2∪ ...∪NL)∩T |+ |NL∩T | > |N1∪N2∪ ...∪NL|. (20)

There are two favourable scenarios for the above condition to hold.
First, every GP in GP-W`1 should pick most of the correct non-
zero locations. This will lead to the LHS of (20) being close to
2K. Second, all GPs should estimate nearly the same signal support.
More importantly, the union of wrong locations picked by GPs (i.e.
(N1∪N2∪...∪NL)∩T c) should be a small-sized set. This will lead to
the RHS of (20) being close to K. Consider a typical reconstruction
example where n = 50, L = 3 and T = {2, 4, 6, 8, 10, 12}. Let the
signal estimates resulting from L GPs be T̂1 = {2, 4, 6, 8, 10, 11},
T̂2 = {2, 4, 6, 8, 12, 15} and T̂3 = {2, 4, 6, 8, 11, 12}. This will
result in N1 = {10, 15}, N2 = {11, 12} and N3 = {2, 4, 6, 8}.
Therefore, |NL ∩ T | = 4, |(N1 ∪ N2 ∪ ... ∪ NL) ∩ T | = 6 and
|N1 ∪ N2 ∪ ... ∪ NL| = 8. Since the condition in (20) holds,
for this reconstruction scenario, GP-W`1 has a more favorable RIP
requirement compared to that of the standard `1-minimization.

IV. EXPERIMENTAL RESULTS

Signal reconstruction is performed using three methods: ReW`1
[18], GPABP [19], and the proposed GP-W`1. Both GPABP and
GP-W`1 involve four GPs (OMP [5], SP [6], IHT [7] and BAOMP
[8]). The cvx solver [23] is used for the implementation of W`1 in all
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Fig. 2: Synthetic sparse signals: Average MSE versus MR

Fig. 3: Synthetic sparse signals: Average reconstruction time versus
MR

three methods. For ReW`1, τ is fixed as 0.1 (a value slightly smaller
than the expected non-zero magnitudes of x).

Synthetic Sparse Signals: For our experiments on synthetic signals,
Gaussian sparse signals of length n = 250 are generated. First exper-
iment presents the reconstruction error as a function of Measurement
Ratio (MR= m

n
). An m × n Gaussian random measurement matrix

is generated to acquire the sparse signal. In this experiment, y is
corrupted by a noise such that its Signal to Measurement Noise Ratio
(SMNR) is 20 dB. The SMNR is defined as

SMNR (in dB) = 10 log10

‖x‖22
‖v‖22

.

The constraint of W`1 is fixed as ‖Φx̃− y‖2 ≤ 0.001. Sparsity level
K is fixed as 30 and the MR is varied between 0.2 and 0.48. For
each value of MR, 250 independent trials are performed to obtain
the average results. Fig. 2 shows the average Mean Square Error
(MSE = 1

n
‖x− x̂‖22) as a function of MR. For MRs greater than

0.3, GP-W`1 results in a reconstruction error that is less compared
to that of the ReW`1 and GPABP. Fig. 3 shows the corresponding
average reconstruction time (i.e. computation time in MATLAB
7.12.0 running on a 64-bit Intel(R) CoreTM i5-2400 processor with 8
GB RAM). As expected, GP-W`1’s convergence is much faster than
that of the ReW`1 and comparable to that of the GPABP.

Next experiment reports the effect of L. The experimental set-up

Fig. 4: Synthetic sparse signals: Effect of L on GP-W`1

Fig. 5: Compressible ECG signals: Average MSE versus MR

is the same as that of the previous experiment and the GP-W`1’s
performance is recorded for L = 2, 3 and 4. In each trial, support set
estimates are obtained for all four GPs mentioned above. In the case
of L < 4, only L randomly chosen support set estimates are used
for weights estimation. It can be seen from fig. 4 that the accuracy
of GP-W`1 increases with an increase in L.

Compressible ECG signals: For conducting an experiment on real
world signal, the leads (i.e. ECG signals) are extracted from records
100, 101, 102 and 103 from the MIT-BIH Arrhythmia database [24].
These signals are divided into chunks of n = 250 samples (with
their amplitudes ranging from 0 to 255). The sparse representations
of these signals are obtained using the discrete cosine transform. We
fixed K= b m

logn
c. The measurement vector y is obtained using an

m× n Gaussian random matrix Φ. Then, y is corrupted by a noise
such that its SMNR is 20 dB. Fig. 5 shows the average MSE as a
function of MR, for three methods (ReW`1, GPABP and GP-W`1).
For MRs greater than 0.35, GP-W`1 gives the least MSE.

V. CONCLUSION

We proposed a gradual weighting strategy for W`1, which handles
the signal estimates resulting from multiple GPs more effectively
compared to the binary weighting strategy of GPABP. For the
proposed GP-W`1, we derived the theoretical upper bound on its
reconstruction error. Experimental results showed that, in reconstruc-
tion of sparse signals with no prior information, GP-W`1 outperforms
GPABP and ReW`1.
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