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ABSTRACT

When using optimization methods with matrix variables in signal
processing and machine learning, it is customary to assume some
low-rank prior on the targeted solution. Nonnegative matrix factor-
ization of spectrograms is a case in point in audio signal processing.
However, this low-rank prior is not straightforwardly related to com-
plex matrices obtained from a short-time Fourier — or discrete Gabor
— transform (STFT), which is generally defined from and studied
based on a modulation operator and a translation operator applied to
a so-called window. This paper is a first study of the low-rankness
property of time-frequency matrices. We characterize the set of sig-
nals with a rank-r (complex) STFT matrix in the case of a unit hop
size and frequency step with few assumptions on the transform pa-
rameters. We discuss the scope of this result and its implications on
low-rank approximations of STFT matrices.

Index Terms— Short-Time Fourier Transform, low-rankness,
approximation.

1. INTRODUCTION

The Short Time Fourier Transform (STFT), or more generally the
Gabor transform, has been widely used, especially when consider-
ing audio signal processing. Indeed, time-frequency representations
[1] of such signals may ease their processing [2]. The STFT can be
defined as a frame by applying a translation operator 7 and a mod-
ulation operator M to a so-called window [3]. Analyzing a signal
with such a frame produces a time-frequency matrix, which can be
after that used to analyze and process the signal. Much attention
has been paid in the literature to such transformations to study both
theoretical aspects and implementations [4].

From the perspective of the optimization over matrix variables in
signal processing or machine learning problems, one often uses low-
rank matrix factorization models to find some structure in the data
and/or to add a good regularization that will improve the estimation.
Famous examples are given by collaborative filtering problems with
applications to recommender systems [5]. In audio, such strategies
proved to be successful when applied to spectrograms, i.e., by retain-
ing the modulus of the STFT coefficients, ignoring the phases, using
nonnegative matrix factorization (NMF) techniques [6, 7, 8]. It is
useful to extract elementary components, such as musical notes or
spectral source patterns, alongside their activation patterns in time.
These results give credence to the intuition of the low-rank nature
of such matrices, easily visible in spectrograms, as in Figure 1, and
the limited number of sound elements. While NMF approaches have
given good results for audio problems, such as source separation [7],
music transcription [6], or spectrogram inpainting [9], two major
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Fig. 1. Spectrogram of the Glockenspiel, composed of about 50
spectral peaks distributed on 15 occurrences of 8 notes. Does the
approximate rank of the complex-valued STFT matrix equal 8, 15,
50, or another value?

limitations remain current challenges in research in audio process-
ing. The first limitation is the approximation made by summing the
moduli, or squared moduli, instead of summing the original coef-
ficients: only time-frequency components that are not overlapping
or that are dominating are preserved. The second limitation is that
the phases associated to each coefficient are required to be able to
synthesize an audio signal after processing the spectrogram. The
problem of phase reconstruction is not only a difficult problem that
is still under intensive research, but also requires to split the process-
ing into two separate problems, on the amplitudes and on the phases
successively, which is bound to give suboptimal results.

One may wish in having the best of both worlds by modeling the
complex-valued STFT matrices using low-rank factorization, allow-
ing true additivity between components, joint modeling of the am-
plitudes and of the phases of the coefficients, and the use of a wide
range of optimization and learning tools. However, the definition
of the STFT, based on the modulation and the translation of a win-
dow, does not give straightforward evidence about the low-rankness
of the resulting time-frequency matrices, nor their capability to be
well approximated by low-rank matrices.

In this paper, we propose to study low-rank time-frequency
(complex-valued) matrices, in order to exhibit the nature of these
objects and their potential use to model audio data. The following
aspects will be particularly of interest:

e from a general viewpoint, how the intuitions of the low-
rankness of the spectrograms can be extended to complex-
valued time-frequency matrices, and how to validate them or
not ?
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e what is a rank-one matrix, or more generally a rank-r ma-
trix, in the time-frequency plane? Can the set of rank-r time-
frequency matrices be fully characterized?

e do time-frequency matrices of real-world sounds have good
low-rank approximations? Which kind of elementary patterns
are obtained?

The paper is organized as follows: Section 2 is dedicated to the
study of the rank of STFT matrices. Numerical simulations are pro-
vided in Section 3, while Section 4 details conclusions on the low-
rankness of STFT matrices and consequences for their modeling.

2. CHARACTERIZATION OF LOW-RANK STFT
MATRICES

In this first section, we characterize the set of signals with a rank-r
STFT matrix, for any » € N, in a context where the signals are dis-
crete and have finite length, and the STFT is circular with maximal
redundancy (i.e., unit hop size and a number of frequency bins equal
to the length of the signal). These conditions, and the scope of the
given results, will be broadly discussed at the end of the section.

2.1. Definitions and properties of STFT representations

We consider complex-valued vectors of length L describing dis-
crete finite signals, denoted by (s [m]),,c(;; € CL, where [L] =
{0,...,L — 1} is the set of the first L integers. The so-called
window is denoted by (h[m]), 1) € CL. As defined above, a
signal s and a window h are indexed from O to L — 1. Whenever
index m is outside this range, we will consider the L-periodic ex-
tension of s and h defined by Ym € Z, s[m] = s[m%L] and
h [m] = h[m%L], where % denotes the modulo operator.

Definition 2.1 (Fourier matrix). The Fourier matrix E € CI*F is
defined by

_ ( —2imkt
E= (e L (1
ke[L],te[L]

Definition 2.2 (DFT and IDFT). The discrete Fourier transform
(DFT) of u € C” on L discrete frequencies is i = DFT (u) =
Eu. The inverse discrete Fourier transform (IDFT) of u € CF is
i = IDFT (u) = E""u = + E*u where E* is the adjoint of E.

There exist different conventions to define the STFT on K

discrete frequencies {v}r,' with v, = % and N time steps
{tn}fz_ol, with ¢, = nh, where h is an arbitrary hop size. If we

denote by 7, the translation by ¢,, and by M, the modulation by vy,
these conventions depend on the order of application of operators

Tr and M.

Definition 2.3 ((K x N)-STFT, band-pass convention). In the so-
called band-pass convention, the (K x N)-STFT of s € C” is de-

fined on discrete frequency v, k € [K] and discrete time ¢,,n €
[V] by

SEI;XIW U@n} = <7;1Mkh, S> = Z s [tn + m] h [m} 672””%”1,

" @

Definition 2.4 ((K x N)-STFT, low-pass convention). In the so-
called low-pass convention, the (K x N)-STFT of s € C” is de-
fined on discrete frequency vi, k € [K] and discrete time t,,n €
[V] by

ngxzv) [k,n] = (MyTnh,s) = ZS [m] hm — t,] e 2™,
" 3)

Those definitions are linked by the following relation: Vk €
[K], n € Z, Stp (k,n) = Sep (k,n) x e~ 2™k™n _that highlights
an identical content between the two conventions up to a frequency,
as well as a similar resulting spectrogram.

A case of interest is when K = N = L, i.e., the redundancy is
maximal. The (L x L)-STFT of s € C* in both conventions, which
will be denoted respectively by Spp = Séﬁxm and Srp = sﬁﬁ“’,
are rewritten

Vk,n,Sgp [k, n] = Z s[n+ m]h[m] o 2T )
Vk,n,Scp [k,n] = Z s[m]h[m — n] e 2T (5)

m
It is worth noting that any (K X N)-STFT representations can be

obtained from the (L x L)-STFT representation by keeping every
% row and every % column.

Proposition 2.1. Let K, N € N be such that K|L and N|L. Then
forany k € [K],n € [N], we have

KxN kL nL
Sz(;p xN) [k7n} = Spp {?7 ?} (6)
KxN kL nL
and SQ,, *xN) [k,n] = Scp {?, ?] . N
Proof. The proof follows from the definition of each matrix. O

2.2. Characterization of rank-r STFT matrices

Lemme 2.2 (Factorization of STFT matrices). For any signal s €
C' and window h € C¥, we have

Sgr = Ediag (h) E™" diag (8) E ®)
and Sir = Ediag (s) E! diag (H) E )
Proof. Let us define H [k, n] = h [k — n] for any k,n € [L]. Be-

cause we consider a L-periodic extension of signals, H € C*F s
a circulant matrix, and then H = E~! diag (H) E. In the low-pass

convention, let s,, € CE be the windowed signal in frame n € [[L]],
so that we have, for any k € [L]

sn [k] =s[k]h[k —n] = s[k]H [k,n] = (diag (s) H) [k, n],

(10)

the STFT matrix can be then written for k,n € [L] as
Sir [k, n] = (Es,) [k] = (E diag (s) H) [k, n] (11)
= (E diag (s) E™" diag (fl) E) [k,n], (12)

which proves (9). Eq. (8) is obtained in the same way by permuting
the role of s and h. O

Using this new formulation of the STFT, it is possible, under
some conditions on the signal or the window, to characterize the
rank of the resulting STFT matrices in both conventions.

Theorem 2.3 (Rank-r STFT matrices). Lets € CE. Ifh e CF
is a window that does not vanish, i.e., Yk € [L],h[k] # 0, then
rank (Sgp) = [|8]|,.

Similarly, if h € C¥ is a window such that its DFT does not
vanish, i.e., Vk € [[L]],ﬁ [k] # 0, then rank (S.p) = |[|s]|,.
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Fig. 2. Analysis of a signal with N. = 6 sinusoids with a Gaussian window: DFT of the signal and of the window (left), spectrogram (middle)
and singular values of STFT matrices, magnitude and energy spectrograms (right).

Proof. If the window h does not vanish, then rank (diag (h)) = L.
According to Proposition 2.2, Sgp = E diag (h) E~! diag (8) E is
the matrix product of diag (8) with full rank matrices, leading to a
resulting matrix with rank rank (Sgp) = rank (diag (s)) = |[s]|,-

Similarly, Sip = Ediag(s) E~! diag (ﬁ) E is the matrix

product of diag (s) with full rank matrices if h does not van-
ish, leading to a resulting matrix product with rank rank (Sip) =
rank (diag (s)) = []],-

O

This theorem states that under weak conditions that are com-
mented below, the set of rank-r STFT matrices in the band-pass con-
vention is composed of signals that are the sum of r pure complex
exponentials at Fourier frequencies, while the set of rank-r STFT
matrices in the low-pass convention is composed of signals that are
the sum of r diracs at integer times. Due to the duality between the
two conventions and between dirac and sinusoids, we will mainly
comment on the case of Sgp.

Rank-one elements. Theorem 2.3 states that the elementary
rank-one components in low-rank Sgp matrices are pure sines at
Fourier frequencies. This is a very restricted set compared to the in-
tuition we can have on spectrograms, where an exact or approximate
rank-one matrix may be composed by any fixed spectral pattern —
e.g., a sum of sinusoids or a wide-band noise — possibly modulated
in amplitude in consecutive frames. No such degrees of freedom are
allowed in complex-valued rank-one STFT matrices.

Finite signals, discrete frequencies and circularity. The fact that
only discrete Fourier frequencies are allowed in Theorem 2.3 can
be viewed as a boundary effect. Indeed, since signals are finite and
circular, only sinusoids with discrete Fourier frequencies have an
integral number of periods and do not have discontinuities. Hence,
this constraint on discrete frequencies is not very restrictive: one
may obtain rank-r matrices with a finer frequency discretization by
increasing the length of the signal, until having a continuous set of
frequencies when the signal is supported on Z.

Condition on the window. The condition on the absence of zeros
in window h or in its DFT can be satisfied easily, e.g., by choosing a
(truncated) Gaussian window, as illustrated in Figure 2. Theorem 2.3
does not cover the use of windows with a more compact support that
results in zeros in the time and Fourier domains — e.g., Hamming,
Hann, rectangular, and so on. We conjecture that in those cases,
some additional signals may have a low-rank STFT matrix, with a
very specific content that depends on the STFT parameters, without
altering the main analysis and conclusions of this paper. A dedicated
study of those signals would extend the scope of Theorem 2.3. An-

4661

other remark is that in practice when the signal length L is large,
even if the condition on the window is satisfied, the amplitude of a
window or its DFT may decrease down to the numerical precision:
this may cause some changes in the actual rank of the STFT matrix,
as illustrated in Figure 3 below.

Extension to rank K x N-STFT matrices. Under the same con-
ditions as in Theorem 2.3, the rank of any K x N-STFT matrices
is upper-bounded by the rank of the N x N-STFT given by Theo-
rem 2.3, thanks to eq. (6) and (7). An exact characterization of the
rank of SéfXN) and Sﬁfo) would be an interesting extension of
Theorem 2.3.

3. NUMERICAL EXPERIMENTS

All the experiments in this section have been realized using the
Python version! of the LTFAT toolbox [4]. For reproducibility
purposes, the code will be made available with the paper?.

3.1. Analysis of low-rank STFT matrices

A direct illustration of Theorem 2.3 is represented in Figure 2, that

shows the analysis of a signal with length L = 128 and composed by

a sum of N. = 6 complex sinusoids at exact Fourier frequencies. A
25 26 28 30 32

group of sinusoids have closed frequenme:O 1987 128> 198 198> 198

while the other sinusoid with frequency T5¢ is isolated, in terms of
the frequency resolution imposed by the Gaussian window in use.
This can be observed in the DFT of the signal and of the window in
the left plot of Figure 2. As a result on the spectrogram, the group
of sinusoids generates a wide, modulated strip, while the isolated
component appears as a time-invariant pattern. When looking at the
singular values in decreasing order on the right plot of Figure 2, one
can see that the rank of Sgp exactly equals the number of sinusoids,
as predicted by Theorem 2.3. Matrix Sy p, in the other STFT conven-
tion, has many high singular values, which prevents any good low-
rank approximation. This illustrates the importance of the choice of
the STFT convention. The dual counterpart, with a signal composed
of diracs at discrete times 25, 26, 28, 30, 32, and 88, would result
in a permutation between the Sgp and Sip curves. The rank of the
energy spectrogram is larger than the number of components, while
the magnitude spectrogram has singular values that decrease more
slowly.

Another illustration is given in Figure 3, that displays the rank of
the STFT representations and the corresponding spectrograms with

"1t fatpy module, http: //pythonhosted.org/ltfatpy/.
’https://mad.lis-lab.fr/
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Fig. 3. Rank of the STFT matrix with respect to the number of sinu-
soids in the signal, for several types of time-frequency matrices.

respect to the number of components N, of the signal of length
L = 64. In this example, the frequencies of components are drawn
randomly at exact Fourier frequencies. The rank of Sgp perfectly
equals the number of components, as predicted by Theorem 2.3, ex-
cept for high values where a plateau is reached, which may be due
to numerical precision. As expected, the rank of Sip is high. The
rank of the energy spectrogram seems to follow a trend in w
which is an upper bound that can be found by the fact that for any
matrix M with rank 7, the rank of [M|? is upper bounded by T(T“)
(the proof is easy and omitted by lack of space). This is due to the in-
terference between close components, which are perfectly modeled
as a low-rank part in the Sgp matrix and not in the spectrogram ma-
trix. Together with the magnitude spectrogram, which has a higher
rank, this shows that in this context, an STFT matrix may be of lower
rank than the related spectrograms.

3.2. Low-rank approximation of STFT matrices of audio signals

While the previous section demonstrates that low-rank STFT matri-
ces are in a very narrow set, we illustrate in this section how this im-
pacts the low-rank approximation of STFT matrices of real sounds.
The (classical) problem considered here consists in finding the best
approximation X € C¥*N of rank r of a matrix X € C¥* that
is to say to solve the following problem:

X = arg min X - Y]2. (13)

YEeCKEXN ro(Y)<r

The Eckart-Young theorem [10] states that the solution is X =
UXV*, where USV* is the singular value decomposition (SVD)

of X and U (resp. E V) is the truncated version of U (resp. X,
V) related to the r largest singular values of X. In addition, the

)

.. . K,N

minimum satisfies HX — XH — ymin(N)
F

k= 'r+1

problem for X = Sgp and X = |Sgp| for different values of r.
Figure 4 displays the normalized approximation error of the
STFT representation, obtained after performing a low-rank approxi-
mation of the STFT and of the corresponding spectrogram matrices,

for the Glockenspiel sound, whose spectrogram is displayed in

2. We solve this

Figure 1. The sound is sampled at 44.1 KHz, and the STFT is
computed using a Hann window of size 2048 with 75% overlapping.
The approximation is better for the spectrograms than for the STFT,
confirming that low-rank models are too constraining for STFT
matrices. Yet, the approximation error being directly related to the
singular values as explained above, one can see that the STFT matrix
is somehow low-rank approximable.

1.0

Approximation error

10° 10! 102

Fig. 4. Glockenspiel sound: normalized approximation error of the
STFT representation when considering a low-rank decomposition of
the STFT matrix Sgp (blue), the magnitude spectrogram (green) and
the energy spectrogram (yellow).

4. CONCLUSIONS

In this paper, we have characterized exactly the set of low-rank ma-
trices in a general context that allows to draw conclusions for low-
rank models on this kind of data. First, this set of low-rank matrices
is very narrow, which highly limits the modeling capacity. Second,
it appears that the phase convention used to define the STFT is criti-
cal, and that the STFT of a mixture of sinusoids and dirac cannot be
jointly described by a low-rank model, which is another major lim-
itation. One may conclude that using a low-rank prior on complex-
valued STFT matrices is not a good strategy. For instance, one may
better design optimization problems with such matrices, and use a
low-rank constraint on its magnitude or square magnitude.

However, we have shown that sum of sinusoids or diracs gives
exact low-rank STFT matrices: it would be then possible to ex-
tend these results by designing low-rank models for local parts of
the time-frequency plane, like patches in images, instead of using a
low-rank prior on the full matrix. These study, despite the negative
results when applied on real audio signals, provides nevertheless a
better understanding of the low-rankness property of STFT matri-
ces, and, to our opinion, brings real hope for the development of
innovative structured models considering low-rank constraints in the
time-frequency plane.
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