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ABSTRACT

We study the optimal sampling set selection problem in
sampling a noisy k-bandlimited graph signal. To minimize
the effect of noise when trying to reconstruct a k-bandlimited
graph signal from m samples, the optimal sampling set se-
lection problem has been shown to be equivalent to finding a
m× k submatrix with the maximum smallest singular value,
σmin [3]. As the problem is NP-hard, we present a greedy
algorithm inspired by a similar submatrix selection problem
known in computer science and to which we add a local
search refinement. We show that 1) in experiments, our al-
gorithm finds a submatrix with larger σmin than prior greedy
algorithm [3], and 2) has a proven worst-case approximation
ratio of 1/(1 + ε)k, where ε is a constant.

Index Terms— Graph Signal Processing, Greedy Algo-
rithm, Noisy Graph Signal, Graph Signal Sampling, Approx-
imation Ratio

1. INTRODUCTION

Graph signal processing extends classical signal processing in
time to signals over an arbitrary graph structure G; concepts
such as Fourier transformation and bandlimitedness have
been studied in the general domain of graph signal [1, 2, 3].
Since the graph of interest is often very large (e.g. Facebook
network), it is useful to consider sampling the graph signal
(i.e., look at a subset of nodes on the graph). Reference [3]
showed that for noiseless k-bandlimited graph signal sam-
pling, we can choose to sample the graph signal such that
perfect recovery is possible. However, the problem becomes
more complicated in the presence of noise. Reference [3]
showed that optimally deciding which m < n nodes to sam-
ple for noisy graph signal is equivalent to a m-row submatrix
selection problem with the goal of maximizing the smallest
singular value, σmin, of the submatrix.

First, we note that in graph signal processing literatures,
the problem of sampling noisy graph signal is considered to
be NP-hard [3, 4] but has not been formally proven. Second,
we note that the problem of optimally choosing a submatrix
is similar but not identical to two existing problems studied in

computer science: 1) matrix column subset selection problem
and 2) matrix low rank approximation problem. The matrix
column subset selection problem, studied in [5], is the prob-
lem of optimally choosing columns from a fat matrix. Matrix
low rank approximation, a well-studied problem [6, 7, 8, 9],
is the problem choosing best low rank (i.e., subset of rows)
approximation of the original matrix.

Inspired by these problems, we study the algorithmic per-
formance of sampling noisy graph signal. First, we prove that
the maximum least singular value, σmin, submatrix selection
problem is NP-hard. Second, we give a novel greedy algo-
rithm for optimally sampling noisy graph signal. We show
with experiments that this algorithm results in submatrices
with larger σmin than the greedy approach given in [3]. Fur-
ther, the greedy algorithm we present has an approximation
ratio of 1/(1 + ε)k, where ε > 0 is arbitrary constant; the ap-
proximation ratio allows us to characterize the ratio of σmin of
the submatrix resulting from our algorithm to the maximum
possible σmin.

2. BACKGROUND AND PREVIOUS WORKS

A graph signal, s ∈ Rn, consists of both a n-node graph
G and a n-length vector denoting the values on each node.
The structure of G is described by a graph operator, which
is usually either the adjacency matrix or the Laplacian ma-
trix. Assuming that the graph operator is diagonalizable with
eigenvector matrix V = [v1, v2, . . . vn], a graph signal s is
k-bandlimited if s ∈ Span{v1, · · · , vk} such that k < n [3].

The problem of sampling (and recovery) of graph signals
is to find a subset I ⊂ {1, 2, · · · , n} with |I| = m ≥ k
(usually m = k) such that one can recover the original graph
signal s ∈ Rn from the sampled signal sI , where sI ∈ Rm is
them-dimensional vector projected from s to the indices in I .
Perfect recovery was shown to be possible when the sampled
signal, sI , is noiseless [3].

However, if the sampled signal sI is corrupted by some
noise, e, so that the observed sampled signal is sI + e, then
perfect recovery is no longer possible. In this case, one hopes
to recover the signal as close as possible to the original signal
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via an estimation function f : Rm → Rn such that the worst
case error

max
e:||e||2≤ε,s

||f(sI + e)− s||2

is minimized. In [3], the authors used the following heuristic
estimation function

f(sI + e) = V V −1I (sI + e),

where VI is a m × k matrix with rows from V indexed by I
(assuming that m = k, then VI is a square matrix). As shown
in [3] the worst case error is

σmax(V −1I ) = 1/σmin(VI).

Moreover, one can show that this is optimal for worst case
error and independent of the choice of orthogonal bases of V .
Thus, the optimal sampling set selection problem is reduced
to finding

I∗ = arg max
I⊂{1,2,··· ,n},|I|=m

σmin(VI). (1)

Assuming that the graph signal s ∈ Rn is k-bandlimited,
consider the matrix [v1, v2, . . . , vk] ∈ Rn×k. Our problem
is to choose m rows from [v1, v2, . . . , vk] such that the result
m × k matrix (usually m = k), VI , satisfies (1). In [3], the
authors provided a greedy algorithm to maximize the least
singular value but does not provide any bounds on the ap-
proximation ratio. Reference [4] provided a similar greedy
algorithms as in [3] that try to maximize the Frobenius norm
and volume of V −1I . The average error version of the optimal
sampling set selection problem was studied in [10], where the
authors established approximation bounds on mean square er-
rors for their greedy algorithms. However, this analysis only
holds for Gaussian noise while the approximation ratio we
present here holds for any noise type.

3. GREEDY ALGORITHM FOR SAMPLING NOISY
GRAPH SIGNAL

First, we formally prove that solving (1) is NP-hard. Our
proof is inspired by the approach in [5] for the matrix column
subset selection problem.

Theorem 1. To find a submatrix C ∈ Rk×k from matrix A ∈
Rn×k by selecting k rows with σmin(C) maximal is NP hard.

Proof Sketch. The reduction is from EXACT-3-COVER(X3C)
problem: let X = {x1, · · · , xk} and C = {c1, · · · , cn}
where ci ⊂ X with |ci| = 3, we want to find k/3 disjoint
elements from C such that their union is X . We follow the
reduction as in [5], with the differences that for each ci we
construct 3 orthonormal vectors v1i , v

2
i , v

3
i rather than only

one vector. With the property that vri 6⊥ vtj for all r, t and
i 6= j if ci ∩ cj 6= φ, and vri ⊥ vtj if ci ∩ cj = φ. Note that,
this implies that the X3C problem has a solution iff one can
find k orthonormal vectors from {vti}. Detailed construction
will be given in longer manuscript.

Theorem 1 shows that solving (1) is NP hard. Thus one
can not hope to find a deterministic polynomial algorithm for
this problem unless P = NP . In this section, we give a
greedy algorithm with approximation ratio 1/(1 + ε)k when
m = k (i.e., the number of nodes to sample is equal to the
bandwidth of the graph signal). First, some definitions:

Definition 1 (`1 analog of σmin). Consider an arbitrary ma-
trix C ∈ Rm×k. Let α(C) be the `1 analog of σmin(C). This
means that

α(C) = min
x∈Rk,||x||2=1

m∑
i=1

|cTi x|,

where cTi is the ith row of C.

Lemma 1. We have

α(C)/
√
m ≤ σmin(C) ≤ α(C).

Proof. The first inequality comes by Cauchy-Schwarz in-
equality and the second inequality is by simple algebra.

Definition 2 (local (1 + ε)-maximum volume, from [12]).
Consider an arbitrary matrix A ∈ Rn×k and a submatrix
C ∈ Rk×k that is formed by choosing k rows from A. We say
C is a local (1 + ε)-maximum volume submatrix, if

(1 + ε)V ol(C) ≥ V ol(C ′) =

k∏
i=1

σi(C
′),

whenever C ′ is the matrix that replace one row of C by a row
in A that is not in C.

Our algorithm for solving (1) and therefore the noisy
graph signal sampling problem consists of two phase: Algo-
rithm 1: Initialization and Algorithm 2: Local Search. We
assume that m = k (i.e., the number of nodes to sample is
equal to the bandwidth of the graph signal).

Algorithm 1 tries to greedily identify the set I such that
the submatrix VI has the maximum volume of all the possible
submatrices in [v1, v2, . . . vk] ∈ Rn×k; algorithm 1 was used
[5] for approximating maximum volume column submatrix.

Algorithm 1 Initialization
Input: Matrix A ∈ Rn×k
Output: Matrix C ∈ Rk×k, such that the rows of C are se-
lected from the rows of A

1. Let C ← φ the empty matrix

2. Find a row aTi ∈ A and aTi 6∈ C that maximizes
V ol(C ′) where

C ′ =

[
C
aTi

]
.

Set C ← C ′.

3. Repeat step 2 until C has k rows. Output C
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The algorithm 1 will output a submatrix with good vol-
ume approximation. However, it is not guaranteed to have a
good smallest singular value approximation. We can further
improve the output with a local search by looking for an out-
put that has local (1+ε)-maximum volume (see Definition 2).
As we will show with experiment in Section 4 and Section 5,
algorithm 2 will result in a new output with larger σmin.

Algorithm 2 Local Search
Input: Matrix A ∈ Rn×k and parameter ε
Output: Matrix C ∈ Rk×k, such that the rows of C are in
the rows of A

1. Let C ← Initialization(A)

2. If there is a row aTi ∈ A and aTi 6∈ C, such that (1 +
ε)V ol(C) ≤ V ol(C ′), then set C ← C ′, where C ′ is
the matrix that replace one row in C by aTi .

3. Repeat step 2 and 3 until there is no update. Output C.

The output of algorithm 2 is C = VI . A good sam-
pling set I can be identified from the output of algorithm 2
by keeping track of which rows was selected from the input
[v1, v2, . . . vk] ∈ Rn×k. We give a detailed theoretic analysis
to the running time and approximation ratio of this algorithm
in the next section.

4. ANALYSIS OF THE ALGORITHM

In this section, we show that the submatrix output of algo-
rithm 2 give a good approximation ratio. To best select the
m = k nodes to sample in the presence of noise, we need
to solve (1). Suppose that there is some optimal sampling
set Iopt that solves (1) corresponding to the optimal subma-
trix Copt; this means that Copt has the largest σmin of all the
submatrices of [v1, v2, · · · , vk] with dimension k × k.

Theorem 2. Let A, ε and C be the input and output of algo-
rithm 2: local search. We have

α(C) ≥ σmin(Copt)

(1 + ε)
√
k
, (2)

where α(C) is the `1 analog of σmin(C) as defined in Defini-
tion 1. The algorithm runs in

O(k5(n− k) log1+ε k). (3)

We delay the proof of this theorem later. Assuming that
Theorem 2 is correct, a natural corollary follows:

Corollary 1. There exist a polynomial time algorithm that
finds a submatrix C ∈ Rk×k from A ∈ Rn×k by selecting k
rows, such that

σmin(C) ≥ σmin(Copt)

(1 + ε)k
,

where Copt is the optimal submatrix with the maximum σmin.

Proof. By Lemma 1, we have σmin(C) ≥ α(C)√
k

. Together
with (2) in Theorem 2, one will finish the proof.

Corollary 1 shows that the approximation ratio between
the smallest singular value of the output of algorithm 2,
σmin(C), and σmin(Copt) is lowerbounded by 1

(1+ε)k , where
ε is some (small) precision parameter and k is the bandlimit-
edness of the graph signal. To prove Theorem 2, we first need
the following lemma:

Lemma 2 (Key lemma). Let C ∈ Rk×k be a matrix, and cTi
be the ith row of C. Then

α(C) = min
x∈Rk,||x||2=1

k∑
i=1

|cTi x| = min
j
d(cTj , H−j), (4)

where H−j is the hyperplane spanned by {cTi }i6=j and
d(c,H) is the Euclidean distance from point c ∈ Rk to
hyperplane H .

Proof. Consider x∗ such that

x∗ = arg min
x∈Rk,||x||2=1

k∑
i=1

|cTi x|. (5)

We only need to prove that x∗ ⊥ H−j for some j. We do so
by induction on the dimension k. Consider the base case of
k = 2, then C consists of 2 rows: cT1 and cT2 . There must
be two lines that are perpendicular to cT1 and cT2 , respectively.
The intersection of these lines (assuming cT1 and cT2 are not
parallel) partition the R2 plane into 4 convex cones. The point
x∗ must on the boundary of one of these cones. To see this,
assume that x∗ lies in the interior of one of the convex cone,
say B. By the construction of B, we have there exist s1, s2 ∈
{−1, 1}, such that

∀y ∈ B, |cT1 y|+ |cT2 y| = (s1c1 + s2c2)T y.

Denote c′ = s1c1 + s2c2. We know that there must be some
small ∆x such that c′T∆x < 0, y = x + ∆x ∈ B and
||y||2 = 1, as x is in the interior of B. However, we will now
have c′T y < c′Tx∗, which contradicts to (5), this proves the
base case.

For general dimension k, we know that Rk will be parti-
tioning into 2k convex cones by the hyperplanes that is per-
pendicular to cTi for i = 1, · · · , k. By the same argument as
for k = 2, we know that x∗ must be in hyperplane H−i that
is perpendicular to ci for some i. We now project the cTj for
j 6= i to H−i with projection image c′Tj . Note that, we have
cTj x

∗ = c′Tj x
∗. We now reduced the problem to the problem

of finding x∗ ∈ H−i with ||x∗||2 = 1 such that
∑
j 6=i |c′Tj x∗|

is minimal. By induction hypothesis on k − 1, we know that
there exist a t 6= i, such that x∗ ⊥ c′Tj thus x∗ ⊥ cTj for all
j 6= i, t. Note that x∗ is also perpendicular to ci, we know
that x∗ ⊥ H−t, the lemma now follows.
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Proof of theorem 2. By lemma 2 we know that α(C) is ex-
actly the minimum distance from cTj to the hyperplane H−j ,
which is spanned by {ci}i 6=j . Let x be the unit vector that
is perpendicular to H−j . We know that α(C) = |cTj x|.
By definition of local (1 + ε)-maximum volume (Defini-
tion 2), we know that for any row rT ∈ Copt we have
|rTx| ≤ (1 + ε)|cTj x| = (1 + ε)α(C) (otherwise one
can replace the row cTj in C with rT that violate the def-
inition of local (1 + ε)-maximum volume). Therefore
σmin(Copt) ≤

√∑
r∈Copt

|rTx|2 ≤
√
k(1 + ε)α(C) ( i.e.

α(C) ≥ 1√
k(1+ε)

σmin(Copt)). This proves equation (2) of
Theorem 2.

Now, we have to analyze the running time of the algo-
rithm. The only unclear thing is the number of iterations. Let
C∗ ∈ Rk×k be the submatrix of A with V ol(C∗) maximum.
Using the result in [5], we have

V ol(C) ≥ V ol(C∗)

k!
, (6)

where C is the output of algorithm 1. Note that, after each
iteration in algorithm 2, the V ol(C) will increase by a factor
of (1 + ε). Using (6) we know that there are at most

log1+ε k! = k log1+ε k,

iterations. This proves equation (3) of Theorem 2.

We have shown that our local search algorithm will give
the approximation ratio on the order of 1

k . This seems to be
loose. However, we have intuition that this is the best we can
get for any naive greedy approach to solve (1).

Theorem 3. For any δ > 0, we can find an instance of the
least singular value subset selection problem, such that

α(C) ≤ α(Copt)

k
− δ,

where C is the output of algorithm 2 and Copt is the optimal
submatrix that maximize α.

The proof of theorem 3 is by explicit construction. Details
will be given in longer manuscripts. Moreover, this construc-
tion also gives a upper bound on σmin(C).

5. EXPERIMENT

In this section, we provide empirical comparisons to opti-
mally sampling noisy graph signal. We consider three al-
gorithms: 1) Greedy without Refinement: algorithm 1 in
this paper, which appeared previously in [5], 2) Greedy: the
greedy algorithm introduced in [3], and 3) Greedy with Re-
finement (ε = 0.001): algorithm 1+2 that we introduced in
this paper (where we only use the algorithms to identify the
first k position then greedily choosing the following positions

as in [3], when m > k). We consider a k-bandlimited graph
signal where k = 10 (corresponding the 10 largest eigenvec-
tor of the adjacency matrix) on an Erdős-Rényi graph with 50
nodes. The x-axis of Figure 1 shows increasing sample sizes
m from m = k = 10 to m = 50. The y-axis shows mini-
mum singular value, σmin, of the different algorithms; in the
context of graph signal processing, the larger the minimum
singular value, the smaller the worst case error of reconstruc-
tion from noisy graph signal samples.

We see that both Greedy without Refinement (algo-
rithm 1) and Greedy with Refinement (algorithm 1+2) result
in submatrices with larger σmin than the method used in [3].
Our inclusion of local search in algorithm 2 results in further
improvement on algorithm 1.
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Fig. 1. Comparison of σmin for different algorithms

6. DISCUSSION

Optimally sampling a k-bandlimited noisy graph signal is
equivalent of finding an m × k submatrix from [v1, . . . vk]
with maximum least singular value. Similar type of problem
is well-studied in computer science. We show a greedy search
algorithm that modifies an existing algorithm for approximat-
ing maximum volume column submatrix in [5] with an added
local search refinement. Experimentally, our algorithm per-
forms better than an existing greedy algorithm for sampling
noisy graph signal. Furthermore, we were able to derive an
approximation ratio on the smallest singular value for our
algorithm when m = k by leveraging the geometry structure
of σmin. We will try to derive similar type of approximation
bounds for greedy sampling when m > k in our future work.
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