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ABSTRACT

We study centralized interpolation of bandlimited graph sig-
nals at a fusion center (FC), when sampled data are transmit-
ted over rate-constrained links. In such a scenario, the per-
formance of the reconstruction task is inevitably affected by
several sources of errors such as observation noise and quan-
tization due to source encoding. In this paper, we propose two
strategies for optimally selecting transmission powers, quan-
tization bits, and the sampling set, with the aim of interpo-
lating a graph signal with guaranteed performance. Numeri-
cal results validate the proposed approach for interpolation of
bandlimited graph signals under communication constraints.

Index Terms— Graph signal processing, interpolation,
sampling on graphs, probabilistic quantization.

1. INTRODUCTION

Over the last few years, there was a surge of interest in
developing novel analysis methods for graph signals, thus
leading to the research field known as graph signal process-
ing (GSP), see, e.g., [1, 2]. The goal of GSP is to extend
classical processing tools to the analysis of signals defined
over an irregular discrete domain, typically represented by a
graph [2, 3]. A fundamental task in GSP is to infer the val-
ues of a graph signal by interpolating the samples collected
from a known set of vertices. A first seminal contribution
to sampling/interpolation theory in GSP is given by [4];
the approach was then extended in [5, 6]. The work in [7]
provides conditions that guarantee unique reconstruction of
signals spanned over a subset of vectors composing the graph
Fourier basis. Reference [8] creates a conceptual link be-
tween uncertainty principle and sampling of graph signals.
Another valid approach is the so called aggregation sam-
pling [9], which involves successively shifting a signal using
the adjacency matrix and aggregating the values at a given
node. The work in [10] proposes efficient methods to select
the sampling set based on powers of the variation operator.
Greedy sampling strategies with provable performance were
proposed in [11]. There exist also randomized sampling
strategies, e.g., [12], [13], which are based on a smart design
of the sampling probability distribution. Finally, adaptive in-

terpolation methods that are capable to handle dynamic graph
signals were proposed in [14–17].

The goal of this work is to propose an optimization strat-
egy that finds optimal radio parameters (i.e., powers and
number of coding bits) to be used over fading communi-
cation links between graph nodes and the FC, in order to
ensure graph signal interpolation with guaranteed recon-
struction performance. Similar approaches for distributed
estimation/detection problems were proposed in [18], [19].
More specifically, in this paper we find the sampling set and
the optimal radio resource allocation that minimizes the sum
of the transmit powers, while enforcing an upper bound on
the mean-square error of a graph signal interpolation task.
The resulting problem turns out to be non-convex, and two
alternative strategies are proposed to cope with such issue.

2. BACKGROUND

We consider a graph G = (V, E) consisting of a set of N
nodes V = {1, 2, ..., N}, along with a set of weighted edges
E = {aij}i,j∈V , such that aij > 0, if there is a link from node
j to node i, or aij = 0, otherwise. A signal x over a graph G
is defined as a mapping from the vertex set to the set of com-
plex numbers, i.e., x : V → C. The graph G is endowed with
a graph-shift operator S defined as an N × N matrix whose
entry (i, j), denoted with Sij , can be non-zero only if i = j or
the link (j, i) ∈ E ; common choices for S are the adjacency
matrix [2], the Laplacian [1], and its generalizations [10]. We
assume that S admits the decomposition S = UΛUH for
some eigenvector matrix U = [u1, . . . ,uN ] and diagonal
matrix Λ, such that SSH = SHS. The Graph Fourier Trans-
form (GFT) of a signal x is defined as its projection onto the
set of eigenvectors {ui}i=1,...,N [1], i.e., GFT(x) = UHx.
Perfect recovery of a graph signal from its samples is possible
if x is bandlimited in the graph frequency domain, i.e., it can
be expressed as:

x = UFsF , (1)

where UF ∈ CN×|F| represents the collection of graph
Fourier vectors associated with a subset of frequency indices
F , and sF ∈ C|F| are the corresponding graph signal’s fre-
quency coefficients. In this context, F denotes the support of
the signal in the graph Fourier domain.
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3. RATE-CONSTRAINED INTERPOLATION
OF GRAPH SIGNALS

Consider a bandlimited signal x defined over the graph G. A
subset S of nodes samples the graph signal at its location and,
according to (1), the measurements are described by:

yi = xi + vi = uH
F,isF + vi, i ∈ S, (2)

where uH
F,i is the i-th row of matrix UF , and vi is zero-mean,

uncorrelated noise with variance σ2
i . Let us recast the scalar

observations in (2) using the vector model:

yS = PS(x + v) = PSUFsF + PSv, (3)

where PS ∈ R|S|×N is a sampling matrix whose rows are
indicator functions for nodes in S, yS = {yi}i∈S , and v =
{vi}Ni=1. In a centralized scheme, the measurements are sent
to an FC, which interpolates using the best linear unbiased
estimator (BLUE) [20] as:

x̂ = UF

(
UH
FPT
S

(
PSCvP

T
S

)−1
PSUF

)−1
×

×UH
FPT
S

(
PSCvP

T
S

)−1
yS , (4)

where Cv = diag{σ2
1 , . . . , σ

2
N}. As a measure of quality of

signal reconstruction provided by (4), we will use the mean-
square error (MSE), which is given by [20]:

MSE = Tr

{(
UH
FPT
S

(
PSCvP

T
S

)−1
PSUF

)−1}

= Tr


(∑

i∈S
uF,iu

H
F,i/σ

2
i

)−1 , (5)

where the second equality in (5) comes from the uncorrelat-
edness of observation noise. The above estimation scheme
can be applied only when observations can be collected
without any distortion. Typically, such an assumption is un-
realistic when the communication links between the fusion
center and sensor nodes are rate-constrained and affected by
fading/pathloss. Thus, we propose an interpolation scheme
where each sensor performs a local quantization of yi in (2)
and generates a messagemi(yi, bi) of bi bits, where the quan-
tizer Qi : yi → mi(yi, bi) has to be designed. Each message
mi(yi, bi) is then transmitted to the FC through a separate
AWGN channel in order to perform the final interpolation.

3.1. Probabilistic Quantization

Suppose that [−A,A] is the signal range that sensors can ob-
serve. We consider a uniform quantizer that divides the range
[−A,A] into intervals of length ∆ = 2A/(2b−1), and rounds
the obserbations in (2) to the neighboring endpoints of these
small intervals in a probabilistic manner [21], [18]. Then, if

l∆ < y < (l+1)∆, with l ∈ {−2b−1, . . . , 0, . . . , 2b−1}, then
y is quantized to m(y, b) according to:

m(y, b) = l∆ + α∆, (6)

where α is a Bernoulli random variable such that

E{α} = Prob{α = 1} = (y − l∆)/∆ ∈ [0, 1].

According to (6), the quantized i-th observation, i.e.,mi(yi, bi),
can be equivalently written as:

mi(yi, bi) = m(xi + vi, bi) = xi + vi + q(yi, bi), (7)

where q(yi, bi) = (α − E{α})∆ denotes the quantization
noise. In particular, it is possible to show that mi(yi, bi) in
(7) is an unbiased estimator of xi, and

E|mi(yi, bi)− xi|2 ≤ σ2
i +

A2

(2bi − 1)2
(8)

is an upper bound on the estimation variance [18, 21].

3.2. Graph Signal Interpolation

Our goal is to construct a linear interpolator of x from
{m1, . . . ,mN} such that the MSE is minimized. Let us
assume that each sensor can send information to the FC,
and that sampling (i.e., selection of the sensing/transmitting
nodes) will be performed by a following optimization step.
In particular, we consider the (quasi-)BLUE given by:

x̂ = UF

(
UH
F (Cv + Cq)

−1
UF

)−1
UH
F (Cv + Cq)

−1
m,

(9)

where m = {m1, . . . ,mN}, Cq = diag{σ2
q1 , . . . , σ

2
qN },

with σ2
qi = A2/(2bi −1)2. Notice that x̂ in (9) is an unbiased

estimator of x since every mi is an unbiased quantization of
xi. Furthermore, combining (5) and (8), it holds that:

MSE ≤ Tr


 N∑

i=1

uF,iu
H
F,i

σ2
i +

A2

(2bi − 1)2


−1 . (10)

Now, we assume that the channel between each sensor and
the FC is corrupted with additive white Gaussian noise whose
double-sided power spectrum density is given by N0/2. Fur-
thermore, we denote by hi the channel coefficient between
sensor i and the FC. If sensor i sends bi bits with quadrature
amplitude modulation with constellation size 2bi at a bit error
probability BERi, then the total amount of required transmis-
sion power [18, 22, 23], is given by:

pi =
2BsNfN0Gd

h2i

(
ln

2

BERi

)
(2bi − 1), (11)
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where Bs denotes the sampling rate, Nf is the receiver noise
figure, and Gd s a system constant defined in the same way as
in [22,23]. In the sequel, for the sake of simplicity, we assume
that the bit error probability of each transmission is made suf-
ficiently small such that errors have a negligible effect on the
MSE in (10). Thus, letting ci =

2BsNfN0Gd

h2
i

(
ln 2

BERi

)
, and

using (11) in (10), we obtain:

MSE ≤ Tr


 N∑

i=1

uF,iu
H
F,i

σ2
i +

A2c2i
p2i


−1 . (12)

In the next section, we will illustrate how to optimize the
transmission powers and bits [cf. (11)] with the aim of inter-
polating a graph signal with guaranteed MSE performance.

4. OPTIMAL POWER AND BIT ALLOCATION

The proposed allocation strategy aims at minimizing the sum
of powers transmitted by all the sensors under the constraint
that the MSE in (12) is lower than a prescribed value γ. Note
that, since the values of {bi} are integers, the transmitted pow-
ers in (11) can assume only discrete values. In the sequel, to
avoid complex integer programming formulations, we sup-
pose that the variables {bi} and, consequently, {pi} assume
real values. The optimization problem can then be cast as:

min
p

N∑
i=1

pi

subject to Tr


 N∑

i=1

uF,iu
H
F,i

σ2
i +

A2c2i
p2i


−1 ≤ γ

pi ≥ 0, i = 1, . . . , N,

(13)

where p = {p1, . . . , pN}. It is interesting to notice that, when
pi = 0 [i.e., bi = 0, cf. (11)] as a result of the optimization
in (13), sensor i does not transmit and its measurement is not
included in the evaluation of the MSE in (12). This means
that problem (13) is capable to perform automatic selection
of the sampling set S, i.e., the set of nodes that send data
to the FC. In fact, numerical results show that we can ob-
tain sparse power vectors p, as an interesting by-product of
the proposed allocation strategy. Moreover, the problem for-
mulation in (13) can easily incorporate unobservable nodes
belonging to some set, say, e.g., Sun, by simply adding the
equality constraints pi = 0 for all i ∈ Sun.

Unfortunately, problem (13) is non-convex due to the
non-convex constraint on the MSE. Thus, to handle the non-
convexity of (13), in the sequel we propose two different
methods. The first approach exploits successive convex ap-

Algorithm 1: SCA method for Problem (15)

Start with z[1] ∈ C. Then, for k ≥ 1, repeat until convergence
the following steps:

S.1) ẑ[k] = arg min
z∈C

f̃(z; z[k])

S.2) z[k + 1] = z[k] + α[k]
(
ẑ[k]− z[k]

)

proximation (SCA) methods [24], whose aim is to find local
optimal solutions of (13). Let us first perform a change of
variables to recast (13) in a form more amenable for SCA
optimization. In particular, let us define

zi =
1

σ2
i +

A2c2i
p2i

, i = 1, . . . , N. (14)

Thus, using (14) in (13) and letting z = {z1, . . . , zN}, we
obtain the following equivalent non-convex problem:

min
z

N∑
i=1

ci

√
zi

1− ziσ2
i

subject to Tr


(

N∑
i=1

zi uF,iu
H
F,i

)−1 ≤ γ
0 ≤ zi <

1

σ2
i

, i = 1, . . . , N.

(15)

Now, letting C be the feasible set of problem (15), we exploit
the approach proposed in [24], and letting z[k] be the guess of
the power vector at iteration k, the SCA algorithm proceeds
as described in Algorithm 1. At every iteration k, given the
current estimate z[k], the first step of Algorithm 1 solves a
surrogate optimization problem involving a strongly convex
approximant of the objective function in (15) that preserves
gradient information at the point z[k], given by:

f̃(z; z[k]) =

N∑
i=1

Aci√
zi[k]

zi
(1− zi[k]σ2

i )3/2
+
τ

2
‖z − z[k]‖2,

(16)
with τ > 0; see [24] for details on the selection of the surro-
gate function f̃(z; z[k]). Then, the second step of Algorithm
1 generates the new point z[k+1] as a convex combination of
the current estimate z[k] and the solutions ẑ[k], exploiting the
step-size sequence α[k]. Under mild conditions on the step-
size sequence α[k], the sequence generated by the Algorithm
1 converges to a stationary solution of (15) [and, equivalently,
of (13)], see [24, Theorem 2].

An alternative approach to SCA is to formulate the opti-
mization problem (13) in a slightly different manner. In par-
ticular, in (13), we can minimize the squared Euclidean norm
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Fig. 1: Graph topology, and sampling nodes (black squares).

of the power vector (i.e.,
∑N

i=1 p
2
i ) instead of the sum of pow-

ers. Then, applying (14) to the resulting problem, we obtain:

min
z

N∑
i=1

c2i
zi

1− ziσ2
i

subject to Tr


(

N∑
i=1

zi uF,iu
H
F,i

)−1 ≤ γ
0 ≤ zi <

1

σ2
i

, i = 1, . . . , N.

(17)

Problem (17) is now a convex program, whose global solution
can be found using efficient numerical tools [25].

5. NUMERICAL RESULTS

Let us consider a graph composed of 30 nodes, whose topol-
ogy is illustrated in Fig. 1. The considered graph signal has
a spectral content limited to the first five eigenvectors of the
Laplacian matrix. The observation noise in (2) is zero-mean,
Gaussian, with a variance σ2

i = 10−4 for all i. Then, in Fig. 2
(top), we illustrate the optimal power allocation obtained us-
ing the SCA algorithm 1, considering the MSE upper-bound
γ = 10−2, channel gains h2i as depicted in Fig. 2 (bot-
tom), and τ = 10−4. The step-size rule is given by α[k] =
α[k−1](1−εα[k−1]), with α[1] = 1 and ε = 0.01. For sim-
plicity, the other parameters are set such that ci = 1/h2i for
all i. The MSE constraint in (13) is always attained strictly.
As we can see from Fig. 2, the method finds a sparse power
vector p, whose non-zero elements are associated to nodes
that have large channel gains. The set of transmitting nodes
corresponds also to the sampling set, and is depicted in Fig.
1 using black squares. Finally, in Fig. 3, we compare the
results obtained by the two proposed methods, i.e., the SCA
algorithm 1, and the convex optimization problem in (17), in
terms of temporal behavior of the sum of allocated powers,
for different values of the parameter γ. In particular, we solve
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Fig. 2: Optimal transmitted powers (top) and channels gain
(bottom) versus node index.
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Fig. 3: Sum of transmitted powers versus iteration index, for
different algorithms and values of the MSE upper-bound γ.

the convex optimization problem in (17) using an SCA algo-
rithm similar to Algorithm 1, but with a different surrogate
function that is tailored to problem (17). As expected, from
Fig. 3, we notice that a larger power consumption is needed
when we require a larger precision of the interpolation task.
Interestingly, the performance of the convexified problem in
(17) is very close to the results of the SCA algorithm applied
to the non-convex problem in (15).

6. CONCLUSIONS

In this paper we have proposed optimal strategies to select
the sampling set and allocate radio parameters (powers/bits)
over rate-constrained transmission channels, in order to meet
an accuracy requirement on a graph signal interpolation task.
The resulting non-convex optimization was solved using SCA
techniques, having guaranteed convergence properties, or ex-
ploiting an alternative convex optimization criterion.
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