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ABSTRACT

A significant number of linear inference problems in wireless
sensor networks can be solved by projecting the observed sig-
nal onto a given subspace. Decentralized approaches avoid
the need for performing such an operation at a central proces-
sor, thereby reducing congestion and increasing the robust-
ness and the scalability of the network. Unfortunately, exist-
ing decentralized approaches either confine themselves to a
reduced family of subspace projection tasks or need an infi-
nite number of iterations to obtain the exact projection. To
remedy these limitations, this paper develops a framework
for computing a wide class of subspace projections in a de-
centralized fashion by relying on the notion of graph filtering.
To this end, a methodology to obtain the shift matrix and the
corresponding filter coefficients that provide exact subspace
projection in a nearly minimal number of iterations is pro-
posed. Numerical experiments corroborate the merits of the
proposed approach.

Index Terms— Graph filter, subspace projection, WSN

1. INTRODUCTION

Wireless sensor networks (WSNs) frequently perform infer-
ence tasks in applications demanding distributed monitoring
[1] and operation [2]. Many of these tasks, such as least
squares estimation, denoising, weighted consensus, and dis-
tributed detection [3], [4] to name a few, can be cast as pro-
jecting the observed signal onto a subspace known to con-
tain the true signal. Although subspace projections can be
computed in a centralized manner if all nodes send their mea-
surements to a fusion center, such a scheme is neither robust
against node failures nor scalable in general. These limita-
tions motivate distributed algorithms for subspace projection.

In the distributed subspace projection method in [5], every
node obtains each iterate as a linear combination of the pre-
vious iterate of its neighbors. The weights of this linear com-
bination are adjusted to achieve fast asymptotic convergence.
An extension is proposed in [3], where the aforementioned
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weights are obtained in a distributed manner. Unfortunately,
these approaches only give rise to asymptotic convergence
to the subspace projection solution. Therefore, a significant
number of transmissions repeated over a long period of time
are needed to reduce the error below a given bound. In ad-
dition, these approaches can only be applied to a reduced set
of topologies, as shown in [6]. These limitations have been
alleviated for average consensus (a special case of subspace
projection) in [7] first and later in the literature of graph sig-
nal processing [8] through graph filters [9], [10], [11]. Graph
filters generalize classical time-invariant filters to accommo-
date signals defined on the vertices of a graph. Remarkably,
these approaches for distributed average consensus converge
in a finite number of iterations at the expense of introducing
memory. More general scenarios of subspace projection have
been addressed in [10] and [12], but the proposed schemes re-
quire knowledge of the so-called shift matrix. Unfortunately,
a valid shift matrix to perform a given projection task is sel-
dom known, which limits their appplicability.

This paper develops a method to obtain not only the graph
filter coefficients but also the shift matrices that enable dis-
tributed subspace projection through graph filters in a finite
number of iterations. The proposed method approximately
minimizes the order of the resulting filters, and therefore the
number of communications between connected nodes.

The remainder of the paper is structured as follows. Sec. 2
reviews some background related to subspace projection and
graph filters before formulating the problem. Sec. 3 describes
the proposed algorithm. Finally, Sec. 4 presents numerical
results and Sec. 5 concludes the paper.

Notation: The spectral radius of a matrix A is p(A) =
max{|A1], ..., | x|}, being Aq,...; A\, its eigenvalues. The
2-norm is [|Alla = VAmax(ATA) = oyax(A), where Apax
(respectively omax ) is the largest eigenvalue (singular value).
[|A||« denotes the nuclear norm of A, cols(A) the set of its
columns, R(A) the span of its columns, and evals(A) the set
of its eigenvalues. Finally, ® denotes the Kronecker product.

2. PROBLEM FORMULATION

After introducing distributed subspace projection and graph
filters, this section formulates the problem.
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2.1. Distributed Subspace Projection

Consider a graph 4(¥,&), where the vertices in ¥ =
{v1,...,un} represent N sensors and there is an edge
(Un,vp) in & C ¥ x ¥ iff sensors v,, and v,/ can com-
municate directly. This includes all self loops, i.e., (v, vp,) €
&, n=1,..., N. Communications are assumed symmetric,
which implies that ¢ is undirected, i.e. (v, v, ) € & iff
(vn/,vn) € &. Let A denote the adjacency matrix of ¢,
where (A),, . = 1if (v, vy) € &, and (A),, v = 0 other-
wise. The goal is to estimate a certain signal vector € RY,
which quantifies the phenomenon of interest (e.g. tempera-
ture), from the observation vectorz = [z, ..., zy]T = 2+,
where z,, € R denotes the observation of node v,, € ¥ and
¢ € R¥ stands for additive noise.

In subspace projection tasks, x is typically known to lie
in some subspace of dimension r < N. Let U} € RV X" be
a matrix whose columns span that subspace. Hence, vector
can be expressed as x = U« for some v € R". Without loss
of generality, the columns of U are assumed orthonormal.
The orthogonal projection of z onto the subspace spanned by
the columns of U, which equals the least-squares estimate
of x, is denoted by & and given by

1>

& [.f:l,...,.f:N]T:UHUﬁzéPz, (1)
where P € RY*N s the projection matrix. The subspace
projection problem is to find x given z and U). Since the
dimension 7 of the signal subspace is smaller than the dimen-
sion N of the observation space, & is expected to be a better
estimate of x than z, an effect known as noise reduction.

A distributed scheme for subspace projection is proposed
in [5], where the iterates z[k + 1] = Wz[k| are computed
for k = 0,1,... with initialization z[0] = z. This scheme
seeks a matrix W € RV*N satisfying (i) (W), v = 0 if
(Vn, ) € & and (ii) limg_ o0 2[k] = limp_oo Wz =
Pz, Vz € RY. Note that the latter condition imposes that
limy_ o, W¥* = P. The number of local exchanges k required
to attain a low error ||z[k] — Pz|| is generally high since this
approach only provides asymptotic convergence. Moreover,
the set of feasible topologies for which conditions (i) and (ii)
can be simultaneously satisfied is limited [6]. In contrast, the
present paper develops an approach that yields convergence
to the exact projection in a finite and nearly minimal number
of iterations and for a larger set of feasible topologies.

2.2. Distributed Subspace Projection via Graph Filters

To introduce the notion of graph filter, it is necessary to define
the so-called graph shift operator z — Sz, where the symmet-
ric matrix S € RY*¥ satisfies (S)n. v = 0if (vn, v) € &,
and is referred to as the shift matrix [10]. Examples of shift
matrices include A and L = diag[A1] — A. It is important to
notice that this shift operator can be evaluated distributedly,
since the n-th entry of y £ Sz can be expressed as

Z (S)n,n’zn’, (2)

n':(vn,v,)EE

where the second equality follows from the definition of shift
matrix. Thus, to compute y,,, node v,, only needs the entries
of z corresponding to its neighbors, which can be obtained
through local information exchanges. Observe that the oper-
ator z — S'z can also be evaluated in a distributed manner
by iteratively applying the shift operator [ times: if z[0] = z
and z[k] = Sz[k — 1],k = 1,...,1, it follows that z[l] = S'z.
A graph filter takes this idea one step further by introducing
also linear combinations of {z[k]}!_. Specifically, an order-
L graph filter is an operator Hz + z, where H € RV*V is a
polynomial of degree L — 1 of the graph shift operator S

L-1
H:=) ¢S 3)
=0

where {¢;}17; are the filter coefficients.'

This paper develops an efficient methodology to obtain
subspace projections in a distributed fashion using graph fil-
ters. To this end, {¢;}°," and S satisfying H = P must be
found. In contrast to [5], which provides limy_,. WF = P,
a graph filter provides H = P in a finite number of iterations.
This is at the expense of introducing memory in the computa-
tions, as required to linearly combine {z[k]}} _,.

In [9], graph filters were applied to finite-time distributed
average consensus, which is a special case of subspace pro-
jection that arises by setting P = 117 /N. Moreover, in
[10], a general framework to implement arbitrary linear op-
erators using graph filters is developed and applied to consen-
sus and network coding. However, both approaches rely on
the knowledge of a suitable shift matrix, but a methodology to
obtain this matrix for general subspace projection remains an
open problem and is the focus of this paper. The problem can
thus be formulated as: given U and &, find S € RY*N and
{1} such that P = 37" ¢! with L as small as possi-
ble and (S),, v = 0if (v, v) €&, n,n' =1,...,N.

3. SHIFT MATRICES FOR FAST DISTRIBUTED
SUBSPACE PROJECTION

This section develops an approach to obtain the shift matrix
and the corresponding filter coefficients that provide exact
subspace projection in an approximately minimal number of
iterations. For this purpose, we first characterize the set of
feasible shift matrices for a given £ and U;. Subsequently,
the corresponding filter coefficients are computed. Finally, an
optimization methodology is proposed to minimize the order
of the filter, i.e. the number of communication steps needed
to obtain the projection via graph filtering.

I'To simplify notation, assume that S© = I even if S is not invertible.
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3.1. Feasible Shifts and Filter Coefficients

In order to compute the filter coefficients, let us first charac-
terize the set of feasible shift matrices, which is given by

S — {s eRVN .8 =87 (S), = 0if (v, vn/) & &,

L-1
3L,c = [co, ...,cr—1]" satisfying UHUﬁ = Z clSl}. )
1=0

Proposition 1. Let U € RN*" have orthonormal columns
and let S be given by (4). Then,

S={SeRVN: (S)u = 0if (vn,vw) £ &,
S = U EAE"U[ + VA VT for some E € R™",

3.2. Minimization of the Filter Order

This section finds the matrix S € S that satisfies (3) with a
nearly minimal order L. To this end, note that ¥ is Vander-
monde and therefore its rank is min(L, N'), where N’ is the
number of distinct eigenvalues in {\, }"-!. Since N’ < N,
(7) is always satisfied for some c if S € S and L = N. Then,
one can set L = N w.l.o.g. and minimize the filter order by
finding ¢ and S such that the last entries of c are zero.

If A, # A\ forall n # n/, then ¥ is invertible and
¢ = ¥~ !X, where no entry of c is necessarily zero. There-
fore, the resulting filter Zl]igl ¢;S! will generally be of order
N. 1In contrast, if there are repeated eigenvalues {\,}Y_;,
one can exploit the resulting degrees of freedom to reduce the
order of the filter. Suppose, for example, that \; = Ay and

/ /
Ay € R™ diagonal and invertible, A | € RNfTXN*Tdiagonal,that An # Ar Vn,n' € {2,...,N},n # n'. In that case,

V, € RN sarisfying EE" =1, VIV, =1, UV, =0,
(Ann # (AL, V€ {1,...,7},¥0’ € {1,.. .,N—r}}

= {SE€RVN : (S)0 = 0if (vn,vw) & &,
S =8| + S for some S| and S | satisfying
S| =S[,R(U)) =R(S)),SL = ST, cols(S,) LU,

if A cevals(S) and \#0 then \ ¢ evaIs(SJ_)}. (5)

The proof is omitted here due to space restrictions. This
proposition essentially establishes that a shift matrix S satis-
fies (3) for some {cl}f:_ol if it can be decomposed as the sum
of two matrices S| and S which respectively span R(Uj)
and a subspace of its orthogonal complement. Moreover, the
non-null eigenvalues of S and S| must be different.

The next step is to determine {¢; }- ;' if a valid S is given.
If S € S, then Proposition 1 establishes that

L-1 L-1
U UT = UE[ Y aAl[ETUT + VL [ 3 anl [V
=0 =0

Multiplying both sides on the left by Uﬁ and on the right
by Uy, it follows that E[Y>, ' ¢, A JET = T or, equiva-

lently, Z{‘:_Ol clA”l = I. On the other hand, multiplying
on the left by V1 and on the right by V |, it follows that

{‘;01 ciA', = 0. Therefore, one must have that

1 Al )\ffl Co
1r 1 AQ )\2L_1 C1
RO B P N G
1 Ay )\k_l CL—1

where A1, ..., Ay are such that A £ diag{\;,..., )\ } and
A2 diag{\,,1,..., A\ }. Equation (6) can be expressed as:
A, = e 7

which provides a means to obtain the coefficients {¢; }lefol.
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one can form matrix W by replacing the first row of ¥ with
[0,0,...,0,1], and form the vector 5\p by replacing the first
entry of A, with a zero. The resulting c = ¥~'\,, satisfies
(7) and ¢y _1 = 0, which leads to a filter of order N — 1. Sim-
ilarly, if there are multiple replicated eigenvalues in {\, }2V_,,
one can repeat the previous procedure to ensure that several
entries of c are zero. It can be seen that the order of the fastest
filter for a given S is N’. Hence, minimizing the number of
distinct eigenvalues of S minimizes the number of filter coef-
ficients required and thereby the order of the filter. The rest
of the section accomplishes this task.

The goal is to minimize the number of different eigen-
values of S = S + S, subject to S € S (cf. (5)). Unfor-
tunately, this problem is non-convex since (i) its objective is
non-convex and (ii) due to the condition in (5) that requires
the non-zero eigenvalues of S| and S, to be different. In
order to alleviate the non-convexity of the objective, one can
replace it with a convex surrogate. To this end, note that if
the condition mentioned in (ii) holds, the number of distinct
non-zero eigenvalues of S is equal to the sum of the number
of distinct non-zero eigenvalues of both S and S . Focus-
ing on S|, note that the larger the number of distinct non-
zero eigenvalues of Sy, the larger the zero norm of the vector
[)\1 — /\2,)\1 — /\3,...,)\1 — )\T,/\Q — )\3,...,)\7«_1 — )\T]T.
A convex surrogate of such a zero norm is the /;-norm [13],
which is proportional to [|A @Iy —In ® A ||, since by def-
inition of nuclear norm?, it equals the [;-norm of the singular
values of its argument. To see this, note that

)\11 1AH
Ap@I-IeA) = - :
/\TI 1AH

which implies that its diagonal entries are then given by

diag(A @ T—T@A)) = [0, A1 — Aoy oy A — Ap1,0] "

2The nuclear norm of a matrix A is ||A ||« = tr(vV/A*A) = Z oi(A).

i



Building upon these notions, one can seek S as the solu-
tion to the following convex problem:

minimize |[FQI-IQF|++||SL®TI-I®S,|«
F,S,S),S1
s. t. (S =0 if (v, o) €& nyn' =1,...., N
S = SH +S,
S, =81, S :Sﬁ
S :UHFU\T
tr(F)=r, tr(S.)<N-—-r—e¢
sty =o,

where ¢ > 0 is a small positive constant, F substitutes
EA E”, and |[F @ I - I® F||, replaces [|[A| @ Iy — Iy®
Ajll« since they are equal and the former avoids eigen-
value computation. The constraint tr(F) = r is introduced
to avoid the trivial solution where S = 0. A constraint
tr(S1) # N — r would in principle be needed to avoid
the trivial solution in which all non-zero eigenvalues of S
are equal to one. Since such a constraint would result in a
non-convex problem, one can solve instead first with the con-
straint tr(S) < N — r— ¢, then withtr(S,) > N— r+ ¢,
and finally select the solution of these two problems yielding
the smallest objective. If both these constraints lead to empty
feasible sets for all ¢ > 0, then the projection P cannot be
exactly computed by means of a graph filter for the given
topology. It is remarkable to note that the set of topologies
that allow implementation of a particular P through a graph
filter is generally larger than the set of topologies that allow
the implementation through the method of [5]. Too see this,
note that in [5] a total of N — r eigenvalues of W have to be
equal to 1 and the rest smaller than 1, which is not required
here. Finally, the constraint that the non-zero eigenvalues of
F differ from those of S, is omitted since it would render
the problem non-convex. In the unlikely case that a non-zero
eigenvalue of F' equals a non-zero eigenvalue of S , one can
solve the problem again for a different €, or weighting the
second term in the objective by a positive number different
from 1.

In the sequel, we propose an additional approach to obtain
shift matrices that yield filters of potentially higher order, but
with significantly less computational complexity. To this end,
the objective function of our original problem can be replaced
with [[F @ I — I ® F||. + ||S.1]||2, where we have replaced
[1S. ® I —I® S, ||+ with ||S_||2. The reason is that while
the former requires the evaluation of all eigenvalues of its ar-
gument, the latter only requires to evaluate the largest one.
The term ||S ||2 promotes solutions having a small spread
of the eigenvalues associated to eigenvectors perpendicular to
the subspace spanned by the columns of U). For this reason,
the largest eigenvalue of the optimal S typically has a high
multiplicity.
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Fig. 1: Performance of our approach vs the one in [5].

4. SIMULATION RESULTS AND DISCUSSION

This section illustrates the performance of the proposed ap-
proach by averaging the results over 100 different random
networks of N nodes. Topologies were generated by deploy-
ing the nodes uniformly at random over a square area of side
R and connecting them if the internode distance was smaller
than 7,,x. Random input signals z were drawn from a nor-
mal distribution with zero mean and unit variance. At every
realization U); was randomly generated by applying Gram
Schmidt to an N x r matrix whose entries are independent
and uniformly distributed between 0 and 1.

The performance of the filter was evaluated by comparing
the filtered signal Hz with the desired projected signal Pz.
Fig. 1 compares the error ||y —Pz]| of both the exact and the
approximate solutions with the error resulting from applying
[5] for » = 5 and r = 10. More specifically, the error is
defined as E(k) = Ea 4| Zf:o cl(k)Slz — Pz|| for the two
objectives proposed and as E(k) = Ea ,|[W*z — Pz|, for
the approach in [5]. According to Fig. 1a and Fig. 1b, the
proposed shifts converge to the desired projection in a nearly
minimal number of steps, outperforming the work in [5].

5. CONCLUSIONS

This paper presents a decentralized method to compute sub-
space projections in a nearly minimal number of iterations.
The approach relies on the notion of graph filtering and solves
convex programs involving nuclear norm minimization over a
judiciously designed feasible set. Simulation tests showcase
the benefits of the proposed scheme.
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