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ABSTRACT

Phase retrieval has been an attractive problem, and many algorithms
have been proposed. Randomized Kaczmarz method is a fast iter-
ative method with good performance in both convergence rate and
computational cost with theoretical analysis. However, they all as-
sume that the iteratively updated variables and the original data are
independent, which is not true in reality. In this paper, we study
for the first time the convergence analysis of this method in the re-
al case, where only a finite number of measurements are available.
Specifically, we theoretically prove the linear rate of convergence
for the phase retrieval via randomized Kaczmarz algorithm without
independence assumption.

Index Terms— Phase Retrieval, Data Reuse, Convergence
Analysis, Independence Assumption, randomized Kaczmarz algo-
rithm

1. INTRODUCTION

1.1. Background

The phase retrieval problem is to recover a vector from some mag-
nitude measurements, which is equivalent to solving a system of
quadratic equations,

yr = |〈ar,x∗〉| , r = 1, 2, . . . ,m, (1)

where x∗ ∈ Cn is an unknown signal to be recovered, ar ∈ Cn, yr ,
and m denote the known sampling vectors, the rth measurement,
and the total number of measurements, respectively. It is general-
ly assumed that the sampling vectors are independent random vari-
ables following the distributionN

(
0, 1

2
I
)

+ iN
(
0, 1

2
I
)
. Apparent-

ly, x∗eiθ is also a solution for any θ ∈ [0, 2π), so the uniqueness
of the solution to the phase retrieval problem can only be defined up
to a global phase. It has been shown that a unique solution can be
determined ifm ≥ (4n−4) [1, 2]. In real case, that is x∗ ∈ Rn and
ar ∈ Rn, ar ∼ N (0, I) independently. Then 2n− 1 measurements
are sufficient.

The phase retrieval problem belongs to the class of the non-
convex quadratic programs. It has appeared frequently in science
and engineering, such as X-ray crystallography [3], microscopy [4],
astronomy [5], diffraction and array imaging [6], and optics [7]. Oth-
er fields of application include acoustics, blind channel estimation in
wireless communications, interferometry, quantum mechanics, and
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quantum information [8]. Focusing on the literature on these physi-
cal science fields, one can find the phase retrieval problem common-
ly encountered, because most sensors can only record the intensity
of the light field without the phase information.

The classical algorithms for phase retrieval are the error reduc-
tion algorithm and its generalizations [9, 10]. These algorithms al-
ternate between the estimates of the missing phase and the unknown
signals iteratively. As suggested by their names, these algorithms
satisfy the residual reduction property, but they lack formal theoret-
ical performance guarantees, although these simple iterative algo-
rithms are often shown to be effective in empirical circumstances.

Another popular method, PhaseLift, approaches the problem
through reconstructing a rank-one matrix, from which the unknown
signal can be obtained [11, 12, 13]. The reconstruction can be solved
using tractable semi-definite programming (SDP) based convex re-
laxations. PhaseLift is known to provide exact solutions (up to a
global phase) to the phase retrieval problem using a near minimal
number of sampling vectors [1]. However, the computational com-
plexity and memory requirement for SDP based algorithms become
prohibitive as the dimension of the signal increases.

Recently, many iterative methods arise including the alternat-
ing minimization method [14], phase retrieval via Kaczmarz method
[15, 16], and the Wirtinger Flow algorithm and its variants [17, 18],
which directly attack the phase retrieval problem in its original non-
convex formulation. In the random online setting, these iterative
methods have been shown to achieve linear rate of convergence to
the solution. Moreover, [16] establishes an exact analysis of the
dynamics of the phase retrieval via Kaczmarz method in the large
systems limit.

1.2. Motivation

In current theoretical works on randomized Kaczmarz algorithms for
phase retrieval, the independence assumption has always been adopt-
ed to make the analysis mathematically easier.

Definition 1 (Independence Assumption) In an iterative algorith-
m for solving phase retrieval problem (1), denote xt−1 as the tem-
porary estimate of x∗ before the tth iteration, and a as the sensing
vector used to measure x∗ and update the estimation in the tth iter-
ation. It is assumed that xt−1 and a are independent.

The independence assumption holds in the ideal case, where
m approaches infinity, or the scenario of online processing, where
the sensing vector is randomly generated for every measuremen-
t obtained for real-time processing. However, in the real case, the
sensing vectors and the corresponding measurements have to be re-
peatedly used, in that in order to reach a high precision estimate, the
number of iterations of the algorithm is usually larger than the num-
ber of measurements m. Therefore, the independence assumption
does not hold, for the reason that if ar and yr have contributed to
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Fig. 1: Visualization of phase retrieval via the randomized Kaczmarz method with both finite and infinite measurements. (a) We introduce a
functional block to denote the single iteration of Kaczmarz method (SIKM). (b) The ideal case of infinite measurements or online processing,
where a new sensing vector is generated in each iteration and used to measure the unknown x∗. Notice that at is independent with the
temporary estimate xt−1. (c) The real case with finite measurements. Before processing, m sensing vectors are generated and used to
produce m measurements. While in the t-th iteration, a pair of sensing vector and measurement, denoted by (art , yrt) are randomly chosen
from the set and sent to SIKM. Notice that art is dependent with xt−1 because the former may have already been used to produce the latter
in previous iterations.

the estimate xt−1 and are sampled again in the tth iteration, then
xt−1 and ar are dependent. Please refer to Fig. 1(b) and (c) for a
visualization of the ideal online case and the real case.

Though the independence assumption does not hold for the real
model with finite measurements in (1), it still plays an important role
in the available works, because it alleviates difficulty in the analysis
[16, 19, 20]. It is far from accurate and adequate to explain the be-
havior of algorithms with finite data by using theories founded on
ideal scenario of infinite measurements. This will be visualized in
Fig. 2 in next section. The number of data is always finite in real-
world applications, and we have to reuse the data in many cases, so
theoretical analysis in the finite observation setting is of importance
in both theory and application, which motivates our study.

According to the simulation results, randomized Kaczmarz
method has good performance in both convergence rate and com-
putational cost. As a general row-action method, its computational
complexity is only O(n) per iteration [21, 22].

1.3. Main contribution

In this paper, we study the convergence for randomized Kaczmarz
method for the phase retrieval problem. This is the first theoreti-
cal analysis on this method without using the independence assump-
tion. To some surprise, we successfully proved that the linear rate
of convergence to the solution still holds in the finite measurements

setting. This will encourage more theoretical research on the finite
measurement setting for phase retrieval. In addition, our method-
ology may be adopted to analyze other problems, such as low-rank
matrix recovery, adaptive filtering, independent component analysis,
and other algorithms for phase retrieval problem.

2. PRELIMINARY

In this work we focus on analyzing the randomized Kaczmarz algo-
rithm for phase retrieval in real case, where x∗ ∈ Rn and ar ∈ Rn.
For random models, we assume that ar ∼ N (0, I) are independent
for r = 1, 2, · · · ,m.

The Phase Retrieval via randomized Kaczmarz algorithm was
proposed in [15] and analyzed in [16]. If we know the sign of
〈ar,x∗〉, according to the Kaczmarz method, xt is obtained by pro-
jecting xt−1 onto the hyperplane determined by the linear equation
〈ar,x〉 = 〈ar,x∗〉. For phase retrieval problem, we can use the sign
of aT

r xt−1 to evaluate the unknown sign of aT
r x
∗. Then the iteration

becomes

xt = xt−1 +
yrsgn(aT

r xt−1)− aT
r xt−1

‖ar‖2
ar. (2)

The algorithm is summarized in Algorithm 1. In order to illustrate
our motivation and the independence issue, the implementation in
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Algorithm 1 Phase Retrieval via Randomized Kaczmarz algorithm
for real case.
Input: {(ar, yr), r = 1, . . . ,m}, initialization x0 using the spec-

tral method, t = 1.
Ensure: xT as an estimate for x∗.

1: while t ≤ T do
2: Choose r randomly from {1, . . . ,m} uniformly.
3: Update xt by using (2).
4: t← t+ 1.
5: end while

Fig. 2: Learning curves of the randomized Kaczmarz method in the
numerical experiments with various α. n is taken as 256. The sim-
ulation results with finite and infinite measurements are denoted by
“simu.(finite)” and “simu.(inf.)”, respectively. The theory with inde-
pendence assumption are denoted by “theory(IA)”.

the case with finite and infinite measurements of this algorithm is
further visualized in Fig. 1.

In our earlier work, [16] establishes an exact analysis of the dy-
namics of the algorithm in the large systems limit under the online
setting. Let dk be the squared distance between the estimate of the
algorithm at the kth iteration and the true signal x∗ and d(t) =
dbtnc. As n tends to infinity, the random sample paths of d(t) will
converge to a continuous time function governed by the solutions of
two deterministic, coupled ordinary differential equations (ODEs)
(see Proposition 2). Considering that the online setting satisfies well
the independence assumption, our earlier result exactly predicted the
learning curve with infinite measurement. However, it diverged ob-
viously from those learning curves reusing a finite dataset. One may
refer to Fig. 2. We read that the theory based on independence as-
sumption in [16] coincides with the simulation results using infinite
measurements. Whereas the algorithm, which has to exploit data
randomly and repeatedly, converges slower than that using infinite
data. When the volume of data, i.e., α, increases, the convergence
will increase gradually. However, even if α reaches 12, which is
the requirement of many classical methods for successful recovery,
the distinction is still obvious. This highlights the importance of our
work

Recently, theoretical guarantees for Phase Retrieval via Ran-
domized Kaczmarz method were provided in (see Theorem 1.2 [19]
and Theorem 1.1 [20]) with the independence assumption between
the iterative variable and the sampling vectors implicitly, i.e., Lem-
ma 2.2 [19], Section 2.1 [20]. As far as we know, there is no state-of-
the-art theoretical work on randomized Kaczmarz algorithm without
using the independence assumption.

3. MAIN RESULT

In Theorem 1, we provide the linear rate of convergence for the ran-
domized Kaczmarz algorithm for the phase retrieval problem of real
case.

Theorem 1 Let x∗ ∈ Rn be any solution to the phase retrieval
problem (1) in the real case and xt denotes the tth iterative solution
of Algorithm 1. Define et = xt − x∗ as the estimate error. Then for
m = αn, with probability at least 1 − e−cn where c is a constant
depending on ε,

E ‖et‖2 − ‖et−1‖2

‖et−1‖2/n
≤−

(
1− p

α

)(
1− 1√

α−p
−
√

2p

α−p ln
eα

p

)2

+
3p

α

(
1 +

1
√
p

+

√
2 ln

eα

p

)2

+ ε, (3)

where p ∈ (0, α) is a parameter determined by
(

1− α
p

2τ√
2π

e−
τ2

2

)
‖x∗‖2 ≤

(
1 + 1√

p
+
√

2 ln eα
p

)2

‖et−1‖2;

1− 2Q (τ) = p
α
,

where τ is a variable and Q(·) is the tail probability of the standard
Gaussian distribution.

Remark 1 Notice that we do not take the expectation of ‖et−1‖2
in the LHS of (3). The bound in (3) holds for arbitrary et−1 even
if it is a function of the sensing vectors, which is dependent with
{ar, r = 1, . . . ,m}. On the contrary, in existing works on such
convergence analysis, it is always assumed that et−1 is a random
vector independent of the sensing vectors, although this assumption
is unjustified for the problem.

Remark 2 When ‖et−1‖ is small enough, p approaches zero mono-
tonically. Then (3) is reduced to

E ‖et‖2 − ‖et−1‖2

‖et−1‖2/n
≤ −

(
1− 1√

α

)2

+
3

α
+ ε. (4)

We read from (4) that when n is large enough and the initialization is
good enough so that ‖e0‖ is small enough, Algorithm 1 will converge
to a solution exponentially if

α > (1 +
√

3)2 = 7.46.

There are already some ways to get good initialization, such as the
truncated spectral method [18].

PROOF Due to the limited space, we only present a sketch of the
proof, which can be divided into three steps. The detailed proof is
included in [23].
Step1 : Subtracting x∗ from both sides of (2), we write the recur-
sion formula on estimate error as

et =

(
I− ara

T
r

‖ar‖2

)
et−1 +

aT
r x
∗ (sgn

(
aT
r x
∗aT
r xt−1

)
− 1
)

‖ar‖2
ar.

(5)
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By introducing S to denote the set of sensing vectors of which the
sign of aT

r x
∗ are wrongly estimated

S =
{
k : sgn

(
aT
k xt−1

)
6= sgn

(
aT
k x
∗
)}

, (6)

and p = |S|/n as the ratio of wrong measurements number to un-
known number, we discuss the estimate error on two cases of r ∈ S
and r ∈ S̄ = {1, 2, · · · ,m}\S. Noticing that

(
I− ara

T
r /‖ar‖2

)
is the projection matrix of the hyperplane perpendicular to ar , we
derive

‖et‖2 =‖et−1‖2 −
(
aT
r et−1

‖ar‖

)2

Ir∈S̄

+

(
4

(
aT
r x
∗

‖ar‖

)2

−
(
aT
r et−1

‖ar‖

)2
)
Ir∈S , (7)

where I is the indicator function. Then take the expectation of (7)
with respect to r which is uniformly distributed in {1, . . . ,m}, we
have

E ‖et‖2 = ‖et−1‖2 −
1

m

∑
k∈S̄

(
aT
k et−1

‖ak‖

)2

+
1

m

∑
k∈S

(
−
(
aT
k et−1

‖ak‖

)2

+ 4

(
aT
k x
∗

‖ak‖

)2
)
. (8)

Notice that here we cannot simply take expectation of (7) with re-
spect to ar with et−1 fixed. The reason is that ar is dependent on
et−1 and is not a Gaussian random vector any more conditioning
on et−1. This is the key point of our approach of abandoning the
independence assumption.

Now we are ready to transform the second and the third item in
the RHS of (8) to the problems of estimating eigenvalues of random
matrices.
Step2 : For the second item, we can get

1

m

∑
k∈S̄

(
aT
k et−1

‖ak‖

)2

≥ 1

z2
M

α−p
α

λm (AS̄) ‖et−1‖2, (9)

where λm(·) denotes the smallest eigenvalue of a matrix, and

AS̄ =
1∣∣S̄∣∣ ∑

k∈S̄

aka
T
k ,

zM = max
k=1,··· ,m

‖ak‖.

For the third item, noticing that for k ∈ S, we read∣∣∣aT
k x
∗
∣∣∣ ≤ ∣∣∣aT

k et−1

∣∣∣ ,
then we have

1

m

∑
k∈S

(
−
(
aT
k et−1

‖ak‖

)2

+ 4

(
aT
k x
∗

‖ak‖

)2
)

≤ 3

m

∑
k∈S

(
aT
k et−1

‖ak‖

)2

≤ 3

z2
m

p

α
λM (AS) ‖et−1‖2, (10)

where λM(·) denotes the largest eigenvalue of a matrix, and

AS =
1

|S|
∑
k∈S

aka
T
k ,

zm = min
k∈1,··· ,m

‖ak‖.

Notice that these two bounds (9) and (10) hold no matter what de-
pendence et−1 and ar have. Actually, as what we mentioned above,
et−1 and ar are often dependent, which makes this operation cor-
rect and necessary. The inappropriate independence assumption is
successfully abandoned for the first time. This is different from all
the previous theoretical works.
Step3 : Substituting (9) and (10) into (8), we have

E ‖et‖2 ≤
(

1− 1

z2
M

α−p
α

λm (AS̄) +
3

z2
m

p

α
λM (AS)

)
‖et−1‖2.

Notice that the dependence problem disappears in this step, since
the minimal or maximal eigenvalues of A can be estimated only by
itself, and is independent from et−1. That is, according to random
matrices theory [24], we have

P

(
λm (AS̄) <

(
1− 1√

α−p
− ε3

)2
)
< C(α−p)n

m e−
(α−p)nε23

2 ,

and

P

(
λM (AS) >

(
1 +

1
√
p

+ ε2

)2
)
< Cpnm e−

pnε22
2 .

Then with probability at least

1− 2me
−n

(
ε21
4
−
ε31
6

)
− Cpnm e−

pnε22
2 − C(α−p)n

m e−
(α−p)nε23

2 ,

we have

E ‖et‖2 ≤‖et−1‖2
(

1−
(
1− p

α

) 1

n(1 + ε1)

(
1− 1√

α−p
− ε3

)2

+
3p

α

1

n (1− ε1)

(
1 +

1
√
p

+ ε2

)2
)
.

After simplification, we complete the proof.

4. CONCLUSION

In this paper, we reveal the linear rate of convergence of the random-
ized Kaczmarz method in the real case with finite measurements.
Different from the previous theoretical works, the inappropriate in-
dependence assumption is abandoned in the analysis for this method
for the first time. A good upper bound of the rate of convergence
is given. Moreover, our methodology could be adopted to analyze
other problems.
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