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ABSTRACT
This paper is concerned with the affine rank minimization
(ARM) problem for low-rank matrix recovery purposes. In-
spired by the recently proposed Turbo-CS algorithm in the
field of compressed sensing, we propose a turbo-type algo-
rithm for ARM, termed Turbo-ARM (TARM). For matrix re-
covery problems with a large class of random measurement
matrices, the performance of TARM can be analyzed via the
state evolution framework. Our numerical results show that
TARM achieves state-of-the-art reconstruction performance,
and our results are further confirmed by state evolution anal-
ysis.

Index Terms— Low-rank matrix recovery, affine rank
minimization, state evolution, low-rank matrix denoising.

1. INTRODUCTION

Low-rank matrices have wide applications in various fields,
including collaborative filtering, system identification, and re-
mote sensing. The basic problem of these applications is to
recover a matrix from a small number of observations by ex-
ploiting the low-rank property [1, 2]. Consider a rank-r ma-
trix X∗ ∈ Rn1×n2 where r, n1, and n2 satisfy r � n1 and
r � n2. We aim to recover X∗ from an affine measurement

y = A(X∗) (1)

where A : Rn1×n2 → Rm is a linear map with m < n1n2 =
n. When A is a general linear operator such as Gaussian
operators and partial orthogonal operators, we refer to it as
low-rank matrix recovery; when A is a selector that outputs a
subset of the entries of X∗, we refer to the problem as matrix
completion. Both of the problems can be done by solving the
following affine rank minimization (ARM) problem:

min
X

rank(X)

s.t. y = A(X).
(2)

However, (2) is a nonconvex problem and computationally
prohibitive. To handle this, a popular alternative to (2) is the
following nuclear norm minimization problem [3]:

min
X
‖X‖∗

s.t. y = A(X).
(3)

Recht et al. [3] proved that when the restricted isometry prop-
erty (RIP) holds for the linear operator A, the solution of
the ARM problem is equivalent to the solution of the nuclear
norm minimization problem. The nuclear norm minimiza-
tion problem can be formulated as a semidefinite program-
ing (SDP) problem and various existing convex optimization
algorithms can be adopted. An interior point method was
proposed in [4], however, the high computational complexity
prevents its application for large scale problems. Several low-
cost iterative methods were proposed, such as the singular
value thresholding (SVT) method [5] and the proximal gra-
dient algorithm [6]. These algorithms involve calculating the
full singular values of a large matrix at each iteration which is
computational complex, and the parameters involved in these
algorithms should be tuned carefully to achieve a good per-
formance.

To reduce the computational complexity of SVD involved
in above algorithms, iterative hard thresholding (IHT) algo-
rithms were proposed [7, 8]. These algorithms involve a pro-
jection step which projects a matrix into a low-rank space at
each iteration. The convergence of these algorithms are very
fast when the rank is small and the computational complexity
are also very low since only a few singular values need to cal-
culated. In [9, 10, 11], the alternation minimization methods
for matrix completion were proposed. The advantage of these
methods is that no SVD is required.

All above algorithms only give the convergence guaran-
tee when certain RIP holds, no convergence prediction can be
made for a given linear operator. In this paper, we propose a
fast-convergence and low-complexity algorithm for low-rank
matrix recovery called the turbo-type affine rank minimiza-
tion (TARM) algorithm. TARM is inspired by the idea of
denoising-based Turbo-CS for compressed sensing proposed
in [12]. Based on the turbo principle in [12], the parameters
in TARM can be determined and a scalar function called state
evolution can be derived for TARM when the linear operator
is right-orthogonally invariant. The state evolution accurately
predicts the per iteration MSE of TARM, as shown in our nu-
merical results. We compare our algorithm to the existing
algorithms for low-rank matrix recovery. Numerical results
show that our proposed algorithm works much better than all
the existing algorithms in terms of both computational com-
plexity and converge rate. TARM can also be extended to
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matrix completion problem. Due to page restriction, we will
not discuss TARM for matrix completion in this paper.

2. THE TARM ALGORITHM

The diagram of TARM is illustrated in Fig. 1. There are
two concatenated modules in TARM. Module A estimates
the low-rank matrix X∗ via a linear estimator E(·) based on
the linear observation y and the input X . Then the function
Eext(·), which linearly combines E(X) and X , is employed
to decorrelate the input and output estimation errors of Mod-
ule A. The superscript “ext” stands for extrinsic, since the
output of Eext(·) is usually referred to as an extrinsic mes-
sage. In Module B, the output R of Module A is passed to
a denoiser D(·) which suppresses the estimation error by ex-
ploiting the low-rank structure of X∗. The denoised output
Z is then passed to a function Dext(·) which linearly com-
bines Z and R for input output errors decorrelation. The two
modules are executed iteratively to refine the estimation. By
comparison, we see that the diagram of TARM in Fig. 1 is a
matrix version of the D-Turbo-CS algorithm in Fig. 2 of [12].

The details of TARM are presented in Algorithm 1. We
shall note that there are various choices of D(·) in the lit-
erature, such as the best rank-r approximation [13] and the
singular value thresholding [14]. In this paper, due to its out-
standing performance, we focus on the best rank-r approxi-
mation defined by

D(R) =

r∑
i=1

σiuiv
T
i (4)

where σi,ui, and vi are respectively the i-th singular value
and the corresponding left and right singular vectors of the
input R.

Denoiser Linear
estimator

y

Module AModule B

Z X

R
Eext

Dext

D E

Fig. 1: The diagram of the TARM algorithm.

3. LOW-RANK MATRIX RECOVERY

We now consider low-rank matrix recovery with linear oper-
ator A being right-orthogonally invariant. Denote the vector
form of X by x = vec(X) = [xT1 ,x

T
2 , · · · ,xTn ]T , where xi

is the ith column of X . The linear operator A can be gen-
erally expressed as A(X) = Avec(X) = Ax, where A ∈

Algorithm 1 TARM for affine rank minimization

Input: A,y,X(0) = 0, t = 0
1: while the stopping criterion is not met do
2: t = t+ 1
3: R(t) = X(t−1) +µtAT (y−A(X(t−1))) // Module A
4: Z(t) = D(R(t)) // Denoiser D
5: X(t) = ct(Z

(t) − αtR(t)) // Dext
6: end while

Output: Z(t)

Rm×n is a matrix representation ofA. Consider a linear oper-
ator A with matrix form A and SVD form A = UAΣAV

T
A ,

where UA and VA are orthogonal matrices and ΣA is a diag-
onal matrix, if VA is a Haar distributed random matrix inde-
pendent of ΣA, we say thatA is a right-orthogonally invariant
linear (ROIL) operator. We focus on two types of ROIL oper-
ators in this paper: partial orthogonal ROIL operators where
the matrix form ofA satisfies AAT = I , and Gaussian ROIL
operators where the elements of A are i.i.d. Gaussian with
zero mean. The linear operator A is normalized such that the
length of each row vector of A is 1.

Assumption 1. For each iteration t, the orthogonal ma-
trix VA is independent of Module A’s input estimation error
X(t−1) −X∗.

Assumption 2. For each iteration t, the output error of Mod-
ule A, given by R(t)−X∗, resembles an i.i.d. Gaussian noise,
i.e., the elements of R(t) −X∗ are independently and identi-
cally drawn from N (0, vt).

Similar assumptions have been introduced in the design
of Turbo-CS in [15] (see also [16]). Later these assumptions
were rigorously analysed in [17, 18] using the conditioning
technique [19], based on which the state evolution was es-
tablished to characterized the behavior of the Turbo-CS algo-
rithm. However, the analysis in [17] is focused on the case
that the denoiser D(·) is separable, i.e., the function D(·) is
individually applied to each element of the input, while the
denoisers involved here (such as the best-rank-r apprixima-
tion in (6)) are non-separable. Therefore, the technique in
[17] and [19] cannot be applied here. In this paper, we in-
troduce these assumptions without rigorous proof. The recent
work [20] on state evolution of AMP for non-seperable de-
noisers may shed some light on a possible rigorous justifica-
tion of our conjecture. We will give simulations to verify our
assumptions.

3.1. Evaluation of {µt}, {αt}, and {ct}
We first note that when we set ct = 1 and αt = 0 for any t,
TARM reduces to the SVP and NIHT algorithms (with differ-
ent choices of µt). However, in TARM, we follow the turbo
principles [12, 15] to determine these parameters. That is,
{µt}, {ct}, and {αt} need to satisfy the following conditions:
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• Condition 1:
〈
R(t) −X∗,X(t−1) −X∗

〉
= 0,

• Condition 2:
〈
R(t) −X∗,X(t) −X∗

〉
= 0,

• Condition 3: ‖X(t) −X∗‖2F is minimized.

Condition 1 requires that the input and output estimation er-
rors of Module A are uncorrelated. Similarly, Condition 2
requires that the input and output estimation errors of Mod-
ule B are uncorrelated. Condition 3 requires that the mean
square error (MSE) of the output estimation error of Module
B is minimized.

We next approximately calculate these parameters satisfy
these conditions under large system limit. We start with µt.
From Condition 1, we have

µt =
‖X(t−1) −X∗‖2F
‖A(X(t−1) −X∗)‖22

(5a)

=
1

x̃TVAΣT
AΣAV T

A x̃
(5b)

=
1

vTAΣT
AΣAvA

(5c)

=
n

m
(5d)

where (5a) follows from Condition 1, (5b) follows by utilizing
the matrix form of A, x̃ = vec(X(t−1)−X∗)

‖X(t−1)−X∗‖F
, (5c) follows by

letting V T
A x̃ = vA, and (5d) follows from the facts that (i) vA

is a unit vector uniformly distributed over the sphere (since
‖x̃‖2 = 1 and VA is haar distributed), (ii) VA is independent
of ΣA, and (iii) ‖ΣA‖2F = m.

We next consider the approximation of αt. We first note
that 〈

R(t) −X∗,X(t) −X∗
〉

(6a)

=
〈
R(t) −X∗, ct(Z

(t) − αtR(t))−X∗
〉

(6b)

≈ ct
〈
R(t) −X∗,Z(t) − αtR(t)

〉
(6c)

where (6a) follows by substituting X(t) in line 5 of Algorithm
1, and (6b) follows from Assumption 2 that

〈
R(t) −X∗,X∗

〉
≈

0. Combining (6) and Condition 2, we have

αt =

〈
R(t) −X∗,Z(t)

〉〈
R(t) −X∗,R(t)

〉 (7a)

=

〈
R(t) −X∗,D(R(t))

〉
nvt

(7b)

≈ 1

n

∑
i,j

∂D(R(t))

∂R
(t)
i,j

(7c)

=
1

n
div(D(R(t))) (7d)

where (7b) follows from Z(t) = D(R(t)) and Assumption
2 that the elements of R(t) − X∗ are i.i.d. Gaussian with

variance vt, the approximation in (7c) follows from Stein’s
lemma [21] since the entries of R(t)−X∗ are i.i.d. Gaussian
distributed, and (7d) is from the definition of the divergence.

Finally, we consider ct. We first note

‖X(t) −R(t)‖2F = ‖X(t) −X∗‖2F + ‖X∗ −R(t)‖2F
+ 2

〈
X(t) −X∗,X∗ −R(t)

〉
(8a)

= ‖X(t) −X∗‖2F +‖X∗−R(t)‖2F (8b)

where (8b) follows from Condition 2. Recall that in the t-
th iteration R(t) is a function of µt but not of αt and ct.
Thus, minimizing ‖X(t)−X∗‖2F is equivalent to minimizing
‖X(t)−R(t)‖2F . For any given αt, the optimal ct is given by

ct =

〈
Z(t) − αtR(t),R(t)

〉
‖Z(t) − αtR(t)‖2F

. (9)

3.2. State Evolution of TARM

Based on Assumptions 1 and 2, we derive the mean square
error (MSE) transfer functions of the two modules in TARM
separately to accurately characterize the per iteration MSE
performance of the TARM algorithm.

When A is a ROIL operator and the empirical distribu-
tion of eigenvalue θ of 1

n2
(X∗)TX∗ converges almost surely

to the density function p(θ) as n1, n2, r → ∞ with n1

n2
→

ρ, rn2
→ λ, the state evolution of TARM is given by

vt = f(τt) (10a)
τt+1 = g(vt) (10b)

where τt and vt are respectively the input noise level of Mod-
ule A and Module B. For partial orthogonal ROIL operator,
f(τ) =

(
1
δ − 1

)
τ ; for Gaussian ROIL operator, f(τ) = 1

δ τ ;
and g(v) is given by

g(v) =
v − λ

(
1 + 1

ρ

)
v − λv2∆

v−λ(1+ 1
ρ )v−λv2∆

1+λ(1+ 1
ρ )v+λv2∆

α2 + (1− α)2

− v (11)

where

α =

∣∣∣∣1− 1

ρ

∣∣∣∣λ− 1

ρ
λ2 + 2 min

(
1,

1

ρ

)
λ (12)

∆ =
1

r

r∑
i=1

1

θ

a.s.−−→
∫ ∞

0

1

θ
p(θ)dθ (13)

as n1, n2, r → ∞ with n1

n2
→ ρ, rn2

→ λ. The constant ∆ is
difficult to obtain since p(θ) is usually unknown. We give an
upper bound that does not depend on ∆:

g(v) ≤ ḡ(v) =
v − λ(1 + 1

ρ )v

(1− α)2
− v. (14)

We will show in the numerical results that the upper bound is
tight enough and is good for performance prediction.
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4. NUMERICAL RESULTS

For the case of partial orthogonal ROIL operator, we generate
a partial orthogonal ROIL operator with the matrix form A =
SW , where S ∈ Rm×n is a random perturbation matrix and
W ∈ Rn×n is a DCT matrix and for the case of a Gaussian
ROIL operator, i.e. A is an i.i.d. Gaussian random matrix of
sizem×n with the elements drawn fromN (0, 1

n ). The rank-
r matrix X∗ ∈ Rn1×n2 is generated by the multiplication
of two i.i.d. Gaussian matrices of size n1 × r and r × n2.
Note that, although we only consider the noiseless cases in
simulation, TARM can be applied to noisy cases.

4.1. State evolution

To show how accurate the state evolution of TARM is, we
plot the simulation and state evolutions curves of TARM in
Fig. 2. From these two figures, we see that the state evolution
of TARM is accurate when the dimension is large enough for
both partial orthogonal and Gaussian ROIL operator. We also
note that the upper bound given by (14) is accurate enough
for prediction even the singular value distribution of X∗ is
not given.
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Fig. 2: Left: State evolution of TARM for partial orthogonal ROIL
operator. r = 40,m/n = 0.35, and the dimensions of X∗ are
shown in the plot. Right: State evolution of TARM for Gaussian
ROIL operator. r = 4,m/n = 0.35, the dimensions of X∗ are
shown in the plot.

4.2. Performance comparison

We compare TARM with the existing state-of-the-art algo-
rithms for low-rank matrix recovery including singular value
projection (SVP) [7], normalized iterative hard thresholding
[8], and Riemannian gradient descent (RGrad) [22]. All algo-
rithms are run under the same settings. The per iteration nor-
malized mean square error of each algorithm is plotted in Fig.
3. From these figures, we see that TARM converges much
faster than NIHT and RGrad for both Gaussian ROIL opera-
tors and partial orthogonal ROIL operators. Note that all the
listed algorithms have similar per iteration running time and
thus we have the same results when comparing by recovery
time.
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Fig. 3: Comparison of algorithms for low-rank matrix recovery.
Left: A is a partial orthogonal ROIL operator with n1 = n2 = 1000,
r = 50, and m/n = 0.39. Right: A is a random Gaussian ROIL
operator with n1 = n2 = 80, r = 10, and m

r(n1+n2−r)
= 3.

4.3. Phase transition

We consider an algorithm to be successful in recovering the
low-rank matrix X∗ when the following conditions are sat-
isfied: 1) the normalized mean square error ‖X

(t)−X∗‖2F
‖X∗‖2F

≤
10−6; 2) the iteration time t < 1000. The dimension of the
manifold of n1×n2 matrices of rank r is r(n1 +n2−r) [23].
So the minimal number of measurement is r(n1 + n2 − r).
Thus, the upper bound for successful recovery is rmax ≤
n1+n2−

√
(n1+n2)2−4m

2 . From Fig. 4, we see that the phase
transition of TARM is closest to the upper bound and consid-
erably higher than the phase transitions of NIHT and RGrad.
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Fig. 4: Phase transition of TARM for low-rank matrix recovery with
partial orthogonal ROIL operator. n1 = n2 = 200. For each al-
gorithm, the region below the phase transition curve succeed to the
recovery of X∗.

5. CONCLUSIONS

In this paper, we proposed the TARM algorithm for affine
rank minimization problem. TARM shows competitive per-
formance compared with the existing methods in both con-
vergence rate and phase transition.
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