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ABSTRACT

This paper proposes an algorithm for the design of entropy-constrained
unrestricted polar quantizer (ECUPQ) for bivariate circularly sym-
metric sources. The algorithm is globally optimal for the class of
ECUPQs with magnitude quantizer thresholds confined to a finite
set. The optimization problem is formulated as the minimization of
a weighted sum of the distortion and entropy and the proposed so-
lution is based on modeling the problem as a minimum-weight path
problem in a certain weighted directed acyclic graph. The proposed
algorithm enables solving the overall problem in O(K2 log ˆ|P|)
time, whereK is the size of the set of possible magnitude thresholds
and P̂ is the set of the number of phase levels for the uniform phase
quantizers.

Index Terms— Unrestricted polar quantization, globally opti-
mal solution, entropy-constrained quantizer, minimum-weight path
problem.

1. INTRODUCTION

A polar quantizer quantizes the magnitude and the phase of a two
dimensional source vector represented in polar coordinates. The
phase quantizer is uniform while the magnitude quantizer may be
nonuniform. Polar quantization of bivariate sources with circularly
symmetric densities, has been extensively investigated either for the
general case or for the specific Gaussian case [2]– [11].

Early work on polar quantization uses independent quantizers
for the two components. Such a scheme is referred in the litera-
ture as a strictly polar quantizer (SPQ) [4] or a conventional polar
quantizer [7]. In later work the unrestricted polar quantizer is intro-
duced (UPQ) [5], where the phase quantizer depends on the magni-
tude level, and UPQ is shown to outperform SPQ.

Most of the work on the analysis and design of polar quantizers
relies on the high resolution assumption. In particular, the asymp-
totic analysis of the uniform polar quantizers, i.e., where the quan-
tizer of the magnitude is also uniform, was performed in [6, 8, 11]
for the conventional case and in [9] for the unrestricted case. On
the other hand, the design of optimal practical polar quantizers, i.e.,
without the high rate assumption, was considered in [3, 4] for the
level-constrained SPQ and in [5] for the level-constrained UPQ.

Further, to increase the efficiency of the polar quantizer, entropy
coding may be applied to the quantizer’s outputs. This was done, for
instance, in [5]. However, for optimal performance the polar quan-
tizer has to be optimized under a constraint on the entropy. Such
a quantizer is called entropy-constrained quantizer. Work [10] is
the only work addressing the design of entropy-constrained polar

A longer version [1] of this work will be published in IEEE Trans. Com-
munications.

quantizers, up to our knowledge. The authors of [10] derive the op-
timal entropy-constrained UPQ (ECUPQ) and the optimal entropy-
constrained SPQ (ECSPQ) using high resolution assumptions. How-
ever, the asymptotic expression cannot be applied to rates smaller
than log2(2πe) ≈ 4.1 bits/pair.

This paper formulates the problem of optimal ECUPQ design as
the minimization of the Lagrangian for a given multiplier λ, which
is the same formulation as in [10]. Thus, the cost function is actually
a weighted sum of the quantizer distortion and entropy. This formu-
lation readily simplifies the problem of rate allocation between the
magnitude quantizer and phase quantizers. The proposed algorithm
models the design problem as a minimum-weight path (MWP) prob-
lem in a certain weighted directed acyclic graph (WDAG), where
each edge represents a possible bin of the magnitude quantizer. In
order to expedite the computation of all weights we develop a fast
strategy for finding the optimal number of phase levels for all pos-
sible magnitude bins. The overall running time of the solution algo-
rithm isO(K2 log ˆ|P|), whereK is the size of the set from which the
magnitude thresholds are selected, while P̂ is the set of the number
of phase levels corresponding to a magnitude bin.

We point out that the design approach based on modeling the
problem as an MWP problem in some WDAG, with or without
a constraint on the number of edges, has been used in the past
for the design of other scalar quantizer systems. For instance, it
was employed for the design of fixed-rate quantizers [12], entropy-
constrained and Wyner-Ziv quantizers [13, 14], multi-resolution and
multiple description quantizers [13–17], joint source-channel quan-
tizer with random index assignment [18], as well as quantizers for
sequential source coding [19]. However, the problem we address
here is significantly different than the problems considered in the
above mentioned work, and as a consequence, the graph to model
the problem is different. Precisely, the graph in our work is different
in structure (i.e., in terms of vertexes and edges) than the graphs
used for the multiple description problem. Furthermore, although
our graph may have similar nodes and edges as the graphs employed
for some of the other problems mentioned above, the edge weights
are different, because the meaning assigned to an edge is different.

The main contribution of our work include: a) We propose the
first globally optimal ECUPQ design algorithm for finite rates. The
optimality claim holds for the class of UPQs with the thresholds for
the magnitude quantizer restricted to a finite set; b) Practical results
for a bivariate memoryless Gaussian source show that at small rates
our algorithm considerably outperforms the best entropy-coded and
entropy-constrained UPQ schemes known to date; c) Our proposed
algorithm is the first algorithm for practical polar quantizer design,
which handles efficiently the problem of rate allocation between the
magnitude and phase quantizers.

The rest of the paper is organized as follows. The next section
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introduces the notations and formulates the optimization problem.
Section 3 shows how the problem can be modeled as the MWP in
some WDAG. Section 4 finalizes the design algorithm and presents
the pseudocode. The experimental results are presented in Section
5, and Section 6 concludes the paper.

2. PROBLEM FORMULATION

Consider a bivariate random variable with the following circularly
symmetric density, as a function of the polar coordinates r and θ,

p(r, θ) =
1

2π
g(r), 0 ≤ r <∞, 0 ≤ θ < 2π.

Note that g(r) is the marginal probability density function (pdf)
of the magnitude variable, while the phase variable is uniformly
distributed over the interval [0, 2π). Additionally, notice that the
magnitude and phase variables are independent. An example of
such a variable is a two-dimensional memoryless Gaussian vector
(X1, X2), i.e., whereX1 andX2 are independent and have identical
marginal pdfs.

Let M denote the number of magnitude levels of the UPQ and
let r , (r1, r2, · · · , rM−1) denote the vector of thresholds of the
magnitude quantizer, i.e., r0 = 0 < r1 < r2 < · · · < rM−1 <
rM =∞. For 1 ≤ m ≤M , let Cm denote the m-th cell (or bin) of
the magnitude quantizer, i.e., Cm = {r|rm−1 ≤ r < rm}. Further,
let P , (P1, P2, · · · , PM ), where Pm denotes the number of phase
regions of the phase quantizer corresponding to Cm, 1 ≤ m ≤ M .
Each phase quantizer is uniform, consequently, each quantization
bin of the UPQ can be represented as

R(m, s) =

{
rejθ|rm−1 ≤ r < rm, (s− 1)

2π

Pm
≤ θ < s

2π

Pm

}
,

for 1 ≤ m ≤ M , and 1 ≤ s ≤ Pm. Clearly, the total number of
quantization bins of the UPQ is N =

∑M
m=1 Pm.

The reconstruction for quantizer bin R(m, s) is Amejθm,s ,
where Am is the reconstruction value of the magnitude for the m-th
magnitude level, and θm,s is the reconstruction value for the phase.

We will use the squared error as a distortion measure. Therefore,
the expected distortion of the UPQ can be expressed as [2, 3, 5]

D =
M∑
m=1

Pm∑
s=1

∫ rm

rm−1

∫ s 2π
Pm

(s−1) 2π
Pm

‖rejθ −Amejθm,s‖2p(r, θ)dθdr

=
M∑
m=1

Pm∑
s=1

∫ rm

rm−1

∫ s 2π
Pm

(s−1) 2π
Pm

(r2 +A2
m − 2rAm cos(θ − θm,s))

g(r)

2π
dθdr.

The best reconstruction values, which minimize the distortion, were
determined in prior work [2, 3, 5] by solving ∂D/∂θm,s = 0 and
∂D/∂Am = 0, leading to

θm,s = (2s− 1)π/Pm, (1)

Am = sinc
(

1
Pm

) ∫ rm
rm−1

rg(r)dr∫ rm
rm−1

g(r)dr
, (2)

where sinc( 1
Pm

) = sin(π/Pm)
π/Pm

. By exploiting (1) and (2), the ex-
pected distortion can be simplified as

D =

∫ ∞
0

r2g(r)dr −
M∑
m=1

A2
m

∫ rm

rm−1

g(r)dr. (3)

Clearly, since the reconstruction values of the UPQ are given by (1)
and (2), it follows that the tuples r and P completely specify the
UPQ.

Let Ia and Iθ denote the random variables representing the mag-
nitude and phase quantization indexes, respectively. Then the en-
tropy of the UPQ equals the joint entropy of (Ia, Iθ), denoted by
H(Ia, Iθ) = H(Ia)+H(Iθ|Ia), which can be expressed as follows

H(Ia, Iθ) =

M∑
m=1

q(m)(− log2 q(m) + log2 Pm), (4)

where q(m) =
∫ rm
rm−1

g(r)dr is the probability of cell Cm.
We formulate the problem of ECUPQ design as the minimiza-

tion of Lagrangian as follows

minM,r,P L(r,P, λ), (5)
subject to ri ∈ A, 1 ≤ i ≤M − 1.

for fixed Lagrangian multiplier λ > 0, where L(r,P, λ) , D +
λH(Ia, Iθ), and A = {a1, a2, · · · , aK} is a finite set from which
the magnitude thresholds of the UPQ are selected.

Note that the problem (5) will be solved with the thresholds of
the magnitude quantizer confined to the finite set A. This set can be
obtained by finely discretizing the interval [0, B] for someB chosen
such that the probability that the magnitude level is larger than B to
be sufficiently small.

It is known [20,21] that the set of solutions to problem (5), when
λ varies over (0,∞), is the set of UPQs such that the corresponding
pair (H(Ia, Iθ), D) is on the lower boundary of the convex hull of
the set of all possible pairs (H(Ia, Iθ), D). Thus, a UPQ which is a
solution to problem (5) minimizes the distortion for the correspond-
ing entropy, therefore it is an ECUPQ.

3. GRAPH MODEL

In this section we show how the minimization problem (5) can be
modeled as an MWP problem in a certain WDAG. Notice that the
first term in (3) is constant, therefore we can remove it from the
cost function. Then, minimizing L(r,P, λ) becomes equivalent to
minimizing C(r,P), where

C(r,P) , −
M∑
m=1

A2
m

∫ rm

rm−1

g(r)dr + λH(Ia, Iθ).

Further, substituting (2) and (4) into the above equation leads to

C(r,P) =

M∑
m=1

∫ rm

rm−1

g(r)dr

(
−sinc2

(
1

Pm

)
x2m + λ log2

Pm∫ rm
rm−1

g(r)dr

)
,

(6)

where xm =

∫ rm
rm−1

rg(r)dr∫ rm
rm−1

g(r)dr
.

Now it can be seen that if the vector of thresholds r is fixed,
then Pm can be optimized separately for each m. Specifically, the
optimal value of Pm, 1 ≤ m ≤M , is

P ∗m = arg min
Pm

(
−sinc2

(
1

Pm

)
x2m + λ log2 Pm

)
,

since
∫ rm
rm−1

g(r)dr and xm are fixed, for fixed r.
Consider now the following notations. For each 0 ≤ α < β ≤

∞, denote

q(α, β) ,
∫ β

α

g(r)dr,
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x(α, β) ,

∫ β
α
rg(r)dr∫ β

α
g(r)dr

,

P ∗(α,β) , min arg min
P

(
−sinc2

(
1

P

)
x(α, β)2 + λ log2 P

)
,

(7)
where the minimization is over all positive integers P . Note that,
if there are more values P minimizing the cost in (7), we select the
smallest one as P ∗(α,β).

Further, by replacing Pm in (6) by P ∗(rm−1,rm), we obtain a new
cost function which only depends on r, denoted by C̄(r), where

C̄(r) ,
∑M
m=1 q(rm−1, rm)

(
λ log2

P∗
(rm−1,rm)

q(rm−1,rm)
−

sinc2
(

1
P∗
(rm−1,rm)

)
x(rm−1, rm)2

)
. (8)

As a consequence, problem (5) is equivalent to the following

minM,r C̄(r) (9)
subject to ri ∈ A, 1 ≤ i ≤M − 1.

The next step is based on the observation that the cost C̄(r) can
be expressed as a summation of costs of the individual intervals
(rm−1, rm), fact which allows us to regard it as the weight of a path
in a certain WDAG, as we show next.

Let us assume that the elements of A are labeled in increasing
order, i.e., 0 < ai < ai+1, for 1 ≤ i ≤ K − 1. Additionally,
let us denote a0 = 0 and aK+1 = ∞. Construct now the WDAG
G = (V,E,w), where V = {0, 1, 2, · · · ,K + 1} is the vertex set,
and E = {(u, v) ∈ V 2 | 0 ≤ u < v ≤ K + 1} is the edge set.
Further, the weight of each edge (u, v) is defined as follows,

w(u, v) , q(au, av)

(
−sinc2

(
1

P̂ (u, v)

)
x(au, av)2 + λ log2

P̂ (u, v)

q(au, av)

)
,

(10)
where we simplify the notation P ∗(au,av) to P̂ (u, v).

The source node in this graph is vertex 0 and the final node is
K+1. A path in this graph from some node u to some node v is any
sequence of connected edges starting at u and ending at v. Clearly,
any path from the source to the final node can be represented as an
(s + 1)-tuple of vertexes t = (t0, t1, · · · , ts), satisfying t0 = 0,
ts = K + 1 and tm−1 < tm, 1 ≤ m ≤ s, for some s ≥ 1. Note
that s equals the number of edges on the path. Let us denote by T(s)
the set of all paths from the source to the final node with exactly s
edges, for each s ≥ 1. The weight W (t) of path t is defined as the
sum of the weights of its edges, i.e.,

W (t) ,
s∑
i=1

w(ti−1, ti).

Let us associate now to each (M − 1)-tuple of thresholds r, with
components from the set A, where M ≥ 1, the M -edge path t ∈
T(M), such that rm = atm for each 1 ≤ m ≤ M − 1. In other
words the m-th edge on this path, which is (tm−1, tm), corresponds
to the m-th magnitude cell [rm−1, rm). Then we see that the weight
of path t equals the cost C̄(r). Additionally, the above correspon-
dence is one-to-one. Therefore, we conclude that problem (9) is
equivalent to the MWP problem in the graph G, i.e., the problem of
finding the minimum-weight path , from the source to the final node.

In the following section we present an efficient algorithm to eval-
uate the weight of each edge and finalize the solution to problem (5).

4. SOLUTION ALGORITHM

Let us assume we know some value Pmax such that P̂ (u, v) ≤
Pmax, for all (u, v) ∈ E, and further denote P , {1, 2, 3, · · · , Pmax}.
Additionally, we denote f(y) = −sinc2( 1

y
) and g(y) = ln y for

any y > 0, and consider the following minimization problem

min
P∈P

(f(P ) + µg(P )), (11)

where µ > 0. It can be easily verified from (7) that P̂ (u, v) is a
solution to problem (11) for µ = λ

x(au,av)2 ln 2
.

For P ∈ P let us denote by S(P ) the point in the plane of co-
ordinates (g(P ), f(P )). Additionally, let U denote the set of points
{S(P )|P ∈ P}. It is known [20, 21] that some value P ∗ minimizes
the cost in (11) if and only if the point S(P ∗) is situated on the lower
boundary of the convex hull of U, and the line of slope −µ passing
through S(P ∗) is a support line to U.

Note that any point S(P ) lies on the lower boundary of the con-
vex hull of U is called an extreme point. Moreover, the set of ex-
treme points of U is the union of line segments connecting any two
consecutive extreme points, since the set U is finite. Any such line
segment is called a convex hull edge. Let P̂ denote the set of in-
tegers P ∈ P such that S(P ) is an extreme point of U. For each
P ∈ P̂, except for the first and the last ones, further denote by
left slope(P ) (respectively, right slope(P )) the slope of the con-
vex hull edge to the left (respectively, right) of S(P ), i.e., connecting
S(P ) with the previous (respectively, next) extreme point. Finally,
the condition that the line of slope −µ passing through some ex-
treme point S(P ) is a support line to U, is equivalent to the relation
left slope(P ) ≤ −µ ≤ right slope(P ).

As a result, we obtain the following property of P̂ (u, v).
Lemma. For each (u, v) ∈ E, the value P̂ (u, v) equals the smallest
P ∈ P̂ satisfying

left slope(P ) ≤ − λ

x(au, av)2 ln 2
≤ right slope(P ). (12)

The above lemma implies that P̂ (u, v) can be found using a binary
search over the set P̂, and it is proved in [1] that P̂ = P \ {2}.
Moreover, we can set Pmax = P̂ (K,K + 1) [1], which can be
found by inspecting all positive integers P ∈ P̂, in increasing order
until relation (12) is satisfied.

Algorithm 1 on the following page describes the algorithm to
solve problem (5) including the procedure for determining the val-
ues P̂ (u, v). We point out that Ŵ (v) denotes the weight of the
minimum-weight path from the source to node v, and ε(v) records
the node preceding v on this optimal path. At the end, the MWP can
be tracked back by utilizing the values of ε(v). For simplicity, we
denote E(P, u, v) ,

(
−sinc2

(
1
P

)
x(au, av)2 + λ log2 P

)
.

In order to enable the computation of each edge weight in con-
stant time, the following cumulative probabilities and first moments
need to be precomputed and stored during the preprocessing step,

Cumi(u) = Cumi(u− 1) +

∫ au

au−1

rig(r)dr,

for i = 0, 1, and 1 ≤ u ≤ K + 1, where a0 = 0, aK+1 =
∞ and Cumi(0) = 0 by convention. Therefore, assuming that
the evaluation of each integral

∫ au
au−1

rig(r)dr takes constant time,
the computation of all these cumulative values takes O(K) time.
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Algorithm 1 Solution algorithm for problem (5).

Ŵ (0) = 0
for v = 1 to K + 1 do
P̂ (v − 1, v) := min arg minP∈P̂E(P, v − 1, v)

Ŵ (v) := Ŵ (v − 1) + w(v − 1, v)
ε(v) := v − 1
for u = v − 2 down to 0 do
P̂ (u, v) := min arg minP∈P̂E(P, u, v)

if Ŵ (u) + w(u, v) < Ŵ (v) do
Ŵ (v) := Ŵ (u) + w(u, v)
ε(v) := u

end if
end for

end for
Restoring the MWP by back-tracking the values of ε(v).

Based on these values, when the weight of edge (u, v) is needed, the
quantities q(au, av) and x(au, av) will be computed in O(1) time.

Finally, by applying binary search for each graph edge leads to
a time complexity O(K2 log ˆ|P|) of solving the problem (5).

5. EXPERIMENTAL RESULTS

This section assesses the practical performance of the proposed
ECUPQ design algorithm and compares it with the designs of [5]
and [10]. The experiments are conducted for a two-dimensional
random vector (X1, X2), where X1 and X2 are independent and
identically distributed Gaussian variables with zero-mean and unit-
variance, with the following joint pdf in polar coordinates

p(r, θ) =
r

2π
exp

(
−r

2

2

)
, 0 ≤ r <∞, 0 ≤ θ < 2π,

where r =
√
x21 + x22, and θ = tan−1(x2/x1). It then follows that

g(r) = r exp(−r2/2).
The finite set of possible thresholds A is obtained by dividing the

range [0, 6] into subintervals of size 0.001 and picking the thresholds
between intervals. In other words, K = 6000 and ai = 0.001i, for
1 ≤ i ≤ K. Moreover, we set Pmax = 600 in the optimization of
the number of phase regions. In order to design an ECUPQ achieving
some target rateRt we run the algorithm for various values of λ until
the entropy of the UPQ becomes sufficiently close to Rt. We use D
to denote the distortion of the proposed approach computed using
(3). The distortion is converted in dB using 10 log10D. The rate R
is computed as the entropy of the UPQ, i.e., H(Ia, Iθ).

The comparison against the entropy-coded UPQ of [5] is per-
formed for rates in the range from 1 to 5 bit/pair based on the results
reported in [5]. The comparison with the asymptotically optimal
ECUPQ of [10] is performed for rates higher than 4.1. Moreover, we
also list the gap between the ECUPQ distortion and the distortion-
rate function DG(R) of the circularly symmetric Gaussian variable,
i.e., DG(R) = 2× 2−R.

Table 1 illustrates the comparison with entropy-coded UPQ in
[5]. Note that all the results related to the UPQs of [5] are taken
from [5]. It can be seen that our algorithm always outperforms the
design of [5] with gains always higher than 0.2 dB, and even larger
than 0.6 dB when R ≥ 3. Additionally, a peak improvement of
0.755 dB is achieved for R = 4.512 bit/pair. Note that the gap
away from DG(R) takes values between 0.883 dB at rate R = 1
and 1.527 dB at R = 4.990 bit/pair.

Table 1: Performance comparison of the proposed ECUPQ with the
entropy-coded UPQ of [5] and DG(R), for rates R ≤ 5 bit/pair.

Rate 10 log10D 10 log10D
[5] 10 log10

D[5]

D
10 log10

D
DG(R)

1.000 0.883 1.348 0.465 0.883
1.585 −0.550 −0.334 0.216 1.211
2.000 −1.681 −1.391 0.290 1.328
2.556 −3.295 −2.941 0.354 1.391
3.139 −4.987 −4.271 0.716 1.450
3.508 −6.079 −5.436 0.643 1.473
3.895 −7.224 −6.615 0.609 1.492
4.512 −9.058 −8.303 0.755 1.515
4.990 −10.486 −9.763 0.723 1.527

Table 2: Performance comparison of the proposed ECUPQ with
ASY, PASY and DG(R), for rates R ≥ log2(2πe) bit/pair.

Rate 10 log10D 10 log10DASY 10 log10DPASY 10 log10
D

DG(R)

4.100 −7.832 −7.800 −7.213 1.501
4.512 −9.058 −9.041 −8.481 1.515
4.990 −10.486 −10.480 −9.973 1.527
5.996 −13.500 −13.507 −13.144 1.539
6.995 −16.506 −16.514 −16.287 1.541
8.000 −19.532 −19.539 −19.408 1.540
9.000 −22.547 −22.549 −22.481 1.538
9.990 −25.528 −25.530 −25.493 1.536
10.992 −28.544 −28.546 −28.528 1.536
11.991 −31.550 −31.553 −31.542 1.536

Next we compare the performance of the proposed design
scheme with the ECUPQ optimized in [10]. We will use the
acronym ASY to refer to the asymptotical ECUPQ performance
derived in [10], and the acronym PASY to refer to the practical
ECUPQ based on the asymptotic point density functions given
in [10]. Table 2 illustrates the performance of the proposed algo-
rithm in comparison with ASY and PASY for several rates in the
range 4.1 to 12 bit/pair, where DASY = 2−(R−log2(2πe))/6, for
rates R ≥ log2(2πe) ≈ 4.094.

We see that the proposed algorithm performs extremely close to
ASY. Specifically, for the rates higher than 4.99 the absolute value
of the performance difference is smaller than 0.01 dB, while for the
rates lower than 4.99, our design is actually slightly better reaching
improvements of up to 0.032 dB. Additionally, it can be observed
that the proposed algorithm outperforms PASY for all rates exam-
ined. The performance improvement is between 0.5 and 0.619 dB
for rates up to 4.99. The gap gradually decreases as the rate in-
creases, but it still remains higher than 0.1 dB for rates up to 8.0.
Finally, for R ≈ 12 the gap falls below 0.01 dB. Moreover, the dif-
ference in performance versus the DG(R) is also presented in Table
2, where the gap ranges from 1.501 dB to 1.541 dB.

6. CONCLUSIONS

This paper focuses on the design of entropy-constrained unrestricted
polar quantizer for bivariate circularly symmetric sources. We pro-
pose a design algorithm which is globally optimal when the thresh-
olds of the magnitude quantizer are confined to a finite set. The al-
gorithm consists of solving the minimum-weight path problem in a
certain weighted directed acyclic graph, in conjunction with the pro-
cedure to find the optimal number of phase regions for each possible
magnitude quantizer bin. The experimental results show significant
improvements over the prior practical designs at low rates, and per-
formance very close to the optimal asymptotical performance.
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