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ABSTRACT

In this paper, a new approach for the design of measurement matrix,
®, for compressive sensing (CS) in a generic context is proposed.
In accordance with well-known classical CS theory, we take the
elements of ® to be random, yet, we include correlations within
the elements of the individual columns of ®. To this end, a new
structure for ® is proposed where the correlations of interest are
controlled by a selectable parameter. We aim at optimizing the pro-
posed ® with respect to the latter correlation parameter by lever-
aging an appropriate criterion in a learning-based framework. We
evaluate the performance of the proposed ® and compare it with
the state-of-the-art literature including random ® with independent
and identically distributed (i.i.d.) elements. Performance advantage
of the proposed approach is validated in different CS scenarios.

Index Terms— Compressive sensing, learning, measurement
matrix, sparse reconstruction.

1. INTRODUCTION

Over the past two decades, there has been a large amount of research
on the problem of recovering a structurally sparse signal, x € C™,
i.e. one with k non-zero elements, from a set of compressed mea-
surements, y, of the form

y=®x+v, ey

where ® € C"*™ is a known measurement matrix and v € C"
represents the measurement noise [1]. This problem, often referred
to as compressive sensing (CS), stems from a wide range of appli-
cations including medical resonance imaging (MRI), spectroscopy,
radar, Fourier optics, shortwave-infrared cameras, facial recogni-
tion and network tomography [2, 3].

The fundamental challenges in the revolution of CS theory can
be identified as the following: development of efficient and practical
sparse signal recovery algorithms stemmed from the groundbreak-
ing methods in [4, 5, 6], investigation of suitable structures such as
sparsity and coherence in the signal of interest, x, e.g. [7, 8, 9],
taking into account the additive noise, v, especially for low-SNR
conditions in CS, as in [10, 11], and finally, design of an appro-
priate measurement matrix, ®, as followed in [12, 13, 14]. In this
paper, we basically focus on the latter topic.

Regarding the measurement matrix design problem, in [12], a
framework to construct deterministic measurement matrices and op-
timize them along with a sparsifying basis is proposed. This ap-
proach, basically developed for image signals, employs a set of
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training images to learn the sensing matrix and the basis. Within
the same line of work, in particular for multiple-input multiple-
output (MIMO) radar signals, the authors in [13] consider a mea-
surement matrix design which can improve the receiver SNR per-
formance. Further in [15], a deterministic yet structurally random
matrix (SRM) to obtain CS measurements is developed, wherein
the sensing signal is first pre-randomized and then fast-transformed
and subsampled to provide the measured samples. Therein, it is
shown that the SRM has comparable reconstruction performance to
that of a completely random sensing matrix. More recently in [14],
a subsampled structure of the form Po W is considered for ® with
W and Pg, respectively being the basis matrix and the subsampling
operator. Therein, a data-driven optimization is sought to obtain the
index set, §2, of the projector, Pgq,.

All aforementioned methods tend to encounter the problem of
measurement matrix design from a deterministic viewpoint, which
makes sense due to imposing less computational burden. Yet, fully
random measurement matrices with their appealing properties such
as the ease of creation, good reconstruction power, inherent incoher-
ence and satisfying well the restricted isometry property (RIP) [16]
are desirable in practice. In addition, there are still a few funda-
mental remarks that can delineate the employment of the traditional
i.i.d. Gaussian measurement matrix for CS'. One such remark is the
fact that the independent columns of a randomly generated & may
have correlations within their own entries. In this work, towards
posing a more generic structure for the random ®, we capitalize on
employing the inter-column correlation (ICC) in designing ®. To
this end, we propose a two-step algorithm where in the first step,
an initial estimate for ® is obtained by considering it in the form
of PW and optimizing the suggested structure for P with respect
to a measure of ICC using an appropriate criterion from [14]. The
columns of the initial estimate of ® are used in the next step to es-
timate the ICC matrix which is ultimately exploited to generate the
independent columns of a Gaussian measurement matrix. The pro-
posed work is evaluated and compared against the state-of-the-art
literature where no such correlation is considered. Our experiments
reveal the advantage of using the ICC-based ® in different CS sce-
narios.

2. PROPOSED MEASUREMENT MATRIX

In this section, the proposed approach for the design of CS mea-
surement matrix is presented. First, we discuss the structure of the

"'See Section I1L.A of [4] for a discussion of this. Such random measurement matri-
ces are referred to as admissible measurement matrices.
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initial ® used for the estimation of the ICC. Next, we explain our
method of choosing one of the suggested structure’s parameters that
controls the amount of ICC. The columns of the resulting initial $
are ultimately exploited to estimate the ICC in the proposed Gaus-
sian measurement matrix.

2.1. Structure of the initial &

Measurement matrices of the form & = PW are of direct interest
in CS, where one is able to choose the projector matrix, P, given
a proper basis, ¥ [14]*. We employ the foregoing structure as an
initial suggestion for the measurement matrix denoted by 3O, yet,
in contrast to [14], where Pg is designed only to select n out of m
rows of W in order to generate <I>(0>, we make use of linear combi-
nations of the rows of ¥ to define P. To this end, we consider the
structure presented in (2) at the bottom of this page for the projec-
tor matrix. As seen, there exist L non-zero elements at each row of
the suggested P, namely, w = {w1, w1, - ,wr}. This is equiv-
alent to selecting a linear combination of L rows of ¥, weighted
by w;’s, as each row of the matrix P. Assuming that the incre-
ment ¢;,. in the starting position of the window, w, is smaller than
its length, L, it is easily seen that each row of the resulting P has
Leorr = L — linc rows of ¥ in common with its adjacent rows (and
fewer with other rows). Given that each row of the basis matrix,
W, corresponds to a distinct frequency or character in the transform
domain, and subsequently, each row is orthogonal to the other, this
way of defining the matrix P imposes correlations across its rows,
or equivalently, within each of its columns. This correlation is to be
used in the considered measure for ICC in Subsection 2.2.

2.2. Selection of the ICC measure

Even though it seems that the choice of parameters L and ¢;,. can
control the amount of ICC to a large extent, this is not convenient
in practice. In this sense, it should be noted that the choice of n and
m, i.e., the measurement and sparse signal lengths, respectively, is
often implied by the problem of interest. As well, taking into ac-
count the structure in (2), it can be shown that L + (n — 1)&inc
shall be equal to m. This limits the available choices for L and
line, and therefore, these parameters are not considered as degrees
of freedom here. Rather, in order to adjust the amount of ICC, we
rely on the inherent shape of the window w. In general, different
window types can be assumed for w, due to its being a matter of
choice in the current problem. In essence, any bell-shaped window
with decaying sidelobes and controllable decay rate would properly
satisfy this purpose. In this regard, we take the window w as L eq-
uispaced samples from a zero-mean Gaussian distribution function
with adjustable variance, v, or standard deviation, v, over an inter-
val, I. To have non-negligible values for w, we assume I € [—3, 3]
in compliance with a standard Gaussian function, i.e., one with unit
variance, and tend to select the appropriate values of v from the
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Fig. 1: Comparison between the existing correlation of two Gaus-
sian windows with the same values of L and #...,, (a): case of large
variance, (b): case of small variance.

range [0, Umaz]. An illustration of our discussion is shown in Fig. 1.
As observed, the two adjacent Gaussian windows of length L over
the interval I have /.., overlapping taps in both cases (a) and (b).
Yet, in case of (a), due to a comparatively high value for the devia-
tion v, the resulting correlation, and therefore ICC, between the two
windows is larger with respect to case (b) where such variance is
visibly smaller. We make use of this fact and take the deviation v of
the Gaussian window w as our measure of the ICC. In this respect,
we take advantage of the maximum-energy criterion in [14]* and
tend to maximize the energy of the observed measurements with
respect to the above-mentioned variance. Employing this learning-
based criterion, we have for the optimum deviation parameter

Vopt; = argmax [P (v)®x|3, 3)

where |.|2 denotes the Euclidean norm, x') is the j-th training
sparse signal with 5 € {1,2,---,J}, and the projector matrix
P(v) is subsequently a function of the deviation v of the taps in
w. Note that the optimal variance, vop: i is obtained for each train-
ing signal x@ separately, resulting in a total of J projector matri-
ces, {P(vopt; )}, and thus, J deterministic measurement matrices,
namely, {<I>§.0>}. The latter set of initial measurement matrices, if
trained under a proper set of sparse signals, bury important informa-
tion about the ICC within each of their columns and will be used in

The so-called sparsifying basis matrix ¥ is often taken as some transform matrix
such as DFT or DCT.

w1 Wy

Pn><m =

wy, 0 0

3This heuristic yet highly efficient criterion amounts to choosing the structure in the
matrix P that preserves the highest energy in the observations given by y = P¥x.

0 wi wy ... wp]
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Fig. 2: Reconstruction probability versus sparsity level for a ran-
domly generated binary signal (Bernoulli process) with noise-free
measurements using the parameter set {n = 120, m = 250, L =
12, line = 2}.

the following subsection to estimate the ICC of the proposed mea-
surement matrix.

2.3. Generation of random ® with ICC

The observations y = ®x can be written in the following form
Y= ¢ @ “)
i=1

with ¢, and x; respectively being the i-th column of @ and the
i-th element of x. It is observed that each column of the measure-
ment matrix, ®, corresponds to one element of the sparse signal,
x. Hence, in its most general form, the term ICC can be actually
viewed as m correlation matrices each corresponding to one of the
m columns of ®. To estimate the aforementioned correlation ma-
trices, an enough number of ensembles of the measurement matrix
columns can be used. To do so, we exploit the columns of the J
measurement matrices {‘IJ;O)} obtained in the previous subsection
as a means of estimating the ICC. In this sense, the following esti-
mator is used for the ICC within ®

J
1 .
B{gp'} =3 o) ¢ ", 1<i<m. ()
j=1

where ¢§O) denotes the i-th column of <I>§O) and {.} is the matrix
Hermitian. Now, the proposed measurement matrix can be gener-
ated by incorporating the n X n correlation matrices given by (5)
into an appropriate random vector generator independently for each
column.

3. NUMERICAL EXPERIMENTS

In this section, we present a summary of the obtained results in
different numerical experiments, illustrating the advantage of the
proposed measurement matrix for CS. To implement the suggested
approach, we handle the optimization in (2) by choosing vop: from

—©— OMP with proposed ®

—&-CoSaMP

—8—CoSaMP with proposed ®

—¥—BCS

—¥—BCS with proposed ®

—&—MAP-OMP

30 —5—MAP-OMP with proposed ®

—A—BP

—A— BP with proposed ®
I I I

20

Normalized MSE (dB)

25

-35

0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

Fig. 3: Normalized MSE versus SNR (dB) for the randomly gen-
erated Gaussian signal using the parameter set {n = 120,m =
250,k =30, L = 12, 4;n. = 2}.

a discrete set of 100 points spanning linearly the range of [0, Vimaz]
Wwith Vmae=1.25. In this way, in addition to having less burden, we
avoid the need for convexity guarantees for the objective function.
In order for m to be equal to L 4 (n — 1)€;y., if required, adequate
zero-padding is assumed at the end of the signal vector x. Choosing
the number of training signals, i.e. J, as 10 provided sufficient
performance in all tested scenarios, without the restriction of using
the same training and test signals.

To demonstrate the robustness of the proposed approach, we use
the suggested @ in different basic CS methods and compare the re-
sults to the case of using an i.i.d. measurement matrix. To this end,
we consider the orthogonal matching pursuit (OMP) [4], the com-
pressive sampling matching pursuit (CoSaMP) [17], the Bayesian
compressive sensing [5], the recently proposed MAP-OMP [18],
and the basis pursuit (BP) methods [1]. The latter is actually the op-
timal solution of the CS problem in the sense of /1 -norm minimiza-
tion. We distinct two scenarios where in the former, a binary signal
of length m, consisting of k ones with the rest of its elements being
zero, is to be recovered from n measurements®. In the latter sce-
nario, we consider to recover randomly generated Gaussian signals
contaminated with white noise at different SNR’s. Both synthetic
signals are generated using Matlab. The reconstruction probabil-
ity® for different k is calculated empirically for the former case, as
shown in Fig. 2. As well, the normalized mean squared error (MSE)
between the true and reconstructed signals versus the SNR level is
illustrated in Fig. 3 using the same methodology. It is observed that
in both scenarios, using the proposed ICC-based measurement ma-
trix helps improving the reconstruction performance, while this ad-
vantage is more pronounced for adverse conditions where the num-
ber of measurements, n, is not large enough compared to the spar-
sity level, k. Also, it is seen that the gap in MSE performance of
the proposed and the traditional measurement matrices is increased
monotonically with increment of SNR. This improvement is in the
order of 3 dBs at best for the scenario under test.

Next, to compare the performance of the proposed measurement
matrix design method with that of the other methods, we consider
the same aforementioned scenarios but employ different measure-
ment matrices in the MAP-OMP method to recover the sparse sig-

“Note that in this case, the CS method is employed only to retrieve the unknown
indices of the non-zero signal elements.
SThis is in fact the probability that the entire binary signal is recovered perfectly.
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Table 1: Reconstruction probability in various sparsity levels using
different measurement matrix design methods.

Measu.rement matrix k=30| k=35| k=10| k=45
design method
Measurement matrix | ) oo | () 69 | 30 | 0.12
with i.i.d. elements
Measurement matrix
0.14
with fixed ICC 0.89 | 0.71 | 0.33
Measurement matrix
0.15
in [14] with fu 0.91 ] 0.74 | 0.36
Proposed 1 05 1 081 | 0.41 | 0.18
Measurement matrix

Table 2: Normalized MSE (dB) versus SNR (dB) using different
measurement matrix design methods.

Measu.rement matrix 5 4B 10 dB 15dB 20dB
design method
Measurement matrix | 75 | 106> | 1555 | -19.17
with i.i.d. elements
Measurement matrix
- - - -19.74
with fixed ICC 4.79 11.16 17.03
Measurement matrix
_ _ - -20.96
in [14] with fug 5.02 11.92 17.98
Proposed 1 5 551 L1303 | _19.10 | 21.87
Measurement matrix

nals. The measurement matrices include the classical i.i.d. one, a
Gaussian random matrix with some correlation structure as the ICC,
and the learning-based approach in [14] with its objective function
being fae. As for the correlation structure within each column of
the Gaussian random matrix, we use an exponentially decaying cor-
relation model, namely, e~ ", with « and 7 respectively equal to a
fixed adjustable constant and the lag between each two entries of a
column. In contrast with the proposed approach where the ICC is
adjusted in a learning-based framework, we call the latter method
the measurement matrix with fixed ICC. Also, the objective func-
tion fae suggests an averaging over training signals, i.e. j, before
optimizing for the index set {2 used in Pg [14]. The corresponding
results are shown in Table 1 and Table 2, respectively for the case
of binary and Gaussian sparse signals. It is inferred that the pro-
posed method, due to making use of the learning-based procedure
to update the ICC, outperforms the method with fixed ICC. Also,
compared to the deterministic learning-based measurement matrix
in [14], the random structure of the proposed measurement matrix
is observed to provide better reconstruction accuracy.

Finally, to investigate the relative performance of the proposed
approach in real-world scenarios, we implement the proposed ap-
proach along with other methods on a data set consisting of MRI
images of knee, available in mridata [19]. For this purpose, we use
the discrete cosine transform (DCT) as the sparse domain in which
the MRI images are represented. Also, to be able to evaluate the
performance for different image sizes, we downsample the original
images. In Fig. 4 parts (a) and (b), the normalized MSE in the re-
construction of the MRI images versus the image resolution and the
compression ratio (namely, m /n) has been shown, in respect. The
visibly smaller reconstruction error in different conditions confirms
the advantage of using the proposed approach for measurement ma-
trix design in practical scenarios.

(a)
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Fig. 4: (a): Normalized MSE versus image resolution for a com-
pression ratio of 4, (b): Normalized MSE versus compression ratio
for images of resolution 128 x 128.

4. CONCLUDING REMARKS

We presented a new approach to design CS random measurement
matrix, ®, for CS by generalizing the conventional Gaussian ma-
trix with i.i.d. entries. Our contribution is to consider the correla-
tion within the entries of each column, namely, the ICC. The latter
is related to a variance parameter, v, and is obtained by expressing
the measurement matrix as P (v) ¥ and using the maximum-energy
criterion in a learning-based framework to obtain the optimal value
for v. Experimentations show the advantage of integrating the pro-
posed training-based @ into various basic CS methods as well as its
superior performance relative to a few previous measurement ma-
trix design methods. Future directions involve the employment of
different correlation structures in ® based on the features of the
sparse signal.
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