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ABSTRACT

An uncertainty principle (UP), which offers information
about a function and its Fourier transform (FT) in the time-
frequency plane, is particularly powerful in the field of signal
processing. In this paper, based on the fundamental rela-
tionship between the quaternion linear canonical transform
(QLCT) and quaternion Fourier transform (QFT), we propose
two different UPs related to the two-sided QLCT. Different
from existing results in the spatial and frequency domains,
new derived consequences can be regarded as a general form
of the UP of the QLCT, which present lower bounds for the
product of spreads of a quaternion-valued function in two
different QLCT domains.

Index Terms— Uncertainty principle, Quaternion linear
canonical transform, Quaternion Fourier transform

1. INTRODUCTION

An uncertainty principle (UP), which provides a lower
bound on the spreads of two specific transform domains, is
of importance in various scientific fields such as mathematic-
s, signal processing and information theory [1]. In quantum
mechanics, one UP demonstrates that the impossibility of si-
multaneous precise measurements of a particle’s momentum
and its position. In signal processing, it states that a signal
cannot be simultaneously sharply located in both time and
frequency domains. On the mathematical side, the classical
Heisenberg UP in the time-frequency plane is given by [2]

∫

R

(t− t0)
2 |f(t)|2 dt ·

∫

R

(w − w0)
2 |F (w)|2 dw

≥ 1

4

(
∫

R

|f(t)|2 dt
)2 (1)

where
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t0 =
1

E

∫

R

t |f(t)|2 dt (2)

w0 =
1

E

∫

R

w |F (w)|2 dw (3)

Herein,E =
∫

R
|f(t)|2 dt =

∫

R
|F (w)|2 dw denotes the en-

ergy off(t). F (w) denotes the Fourier transform (FT) of the
signalf(t). t0 andw0 stand for the mean time and mean fre-
quency, respectively. With loss of generality, lett0 = w0 = 0
since UPs do not depend on the location of means. The UP in
Eq.(1) describes that the product of spreads of a given signal
f(t) in the time and frequency domains is limited by a lower
bound. In terms of the importance of the UP in mathematics,
physics, optics and signal processing, there are many efforts
to extend it into various types of functions and integral trans-
forms in one dimensional form [2–7].

The linear canonical transform (LCT) [8] is a three free
parameter class of linear integral transformation, which in-
cludes many important integral transforms as its special cases
such as the FT, the fractional Fourier transform (FRFT), the
Fresnel transform (FST), the Lorentz transform (LT), and oth-
er transforms. It is an effective tool for chirp signals and used
widely in various fields of optics and signal processing [8, 9].
The UP in Eq.(1) has been generalized for a complex signal
f(t) with unit energy in two different LCT domains [7]

∫

R

u2 |FA1
(t)|2 dt ·

∫

R

v2 |FA2
(u)|2 dw

≥ (a1b2 − a2b1)
2

4

(4)

whereFAi
denotes the LCT of the signalf(t) with the pa-

rameter matrixAi =

[

ai bi
ci di

]

∈ R
2×2, i = 1, 2 limited to

det(Ai) = 1.
Recently, it has become popular to extend integral trans-

forms from real and complex numbers to quaternion algebra
to study higher dimension, for instance, the quaternion Fouri-
er transform (QFT) [10], the fractional quaternion Fourier
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transform (FRQFT) [11], the quaternion wavelet transfor-
m (QWT) [12], the quaternion linear canonical transform
(QLCT) [13, 14] and others [15]. Many properties of the
classical FT have been extended for quaternion types includ-
ing shift, modulation, differentiation, energy conservation,
convolution and correlation, UP and so on. The conventional
UP in Eq.(1) has been generalized for the right-sided QFT
firstly by Bahri [10] in the name of component-wise UP, see
Lemma 1. The work of Bahri motivates a large amount of
attempts on generalizing various UPs from complex FT into
the QFT setting [16–18]. Since the LCT has also been inves-
tigated with the context of quaternion algebra, and played a
vital role in the representation of hyper-complex signal [13],
it is natural to ask what the UPs in the QLCT setting obey? To
the best of our knowledge, most of existing works are focused
on lower bounds in the spatial and LCT frequency domains
[13, 19–21]. However, the UP in Eq.(4) with respect to ar-
bitrary two different QLCT domains have not derived yet.
It is therefore interesting and worthwhile to investigate these
kinds of UPs and obtain more valuable results associated with
the QLCT.

The rest of this paper is organized as follows. Section 2
provides a brief introduction to some general definitions of
quaternion algebra and the QLCT. New UPs in two differen-
t QLCT domains are given in Section 3. Finally, Section 4
concludes this paper.

2. PRELIMINARIES

2.1. Quaternion algebra

The quaternion algebra [10] was first invented by W. R.
Hamilton in 1843 and is denoted byH in his honor. Every
element ofH can be written in the following form

H = {q = q0 + q1i + q2j + q3k|q0, q1, q2, q3 ∈ R} (5)

where i2 = j2 = k2 = −1 are imaginary units and obey
Hamilton’s multiplication rules

ij = −ji = k, jk = −kj = i, ki = −ik = j (6)

For a quaternion numberq = q0 + q1i + q2j + q3k ∈ H,
q0 is called as the scalar part ofq and denoted bySc(q).
q1i + q2j + q3k is named as the vector (or pure) part ofq and
conventionally notated byq. The conjugatēq of a quaternion
q is given by

q̄ = q0 − q1i − q2j − q3k (7)

which is an anti-involution, i.e.,

qp = p̄q̄ (8)

According to Eq.(7), the norm or modulus ofq ∈ H is defined
by

|q| = √
qq̄ =

√

q20 + q21 + q22 + q23 (9)

and the inverse ofq ∈ H \ {0} is

q−1 =
q̄

|q|2
(10)

A quaternion-valued functionf : R2 → H can be expressed
as

f(x) = f0(x) + f1(x)i + f2(x)j + f3(x)k,

f0(x), f1(x), f2(x), f3(x) ∈ R
(11)

2.2. The quaternion linear canonical transform

Definition 1 Let Ai =

[

ai bi
ci di

]

∈ R
2×2 be a matrix pa-

rameter satisfyingdet(Ai) = 1, for i = 1, 2. The two-sided
QLCT off ∈ L1

(

R
2,H

)

is defined by [13, 14]

LH

A1,A2
{f}(u) =

∫

R2

K i
A1

(x1, u1)f(x)K
j
A2

(x2, u2)dx

(12)

where the kernel functions of the QLCT above are given by

K i
A1

(x1, u1) =







1√
2πb1

e
i
(

a1

2b1
x2

1
−

x1u1

b1
+

d1

2b1
u2

1
−π

4

)

, b1 6= 0
√
d1e

i c1d1

2
u2

1 , b1 = 0

and

K
j
A2

(x2, u2) =







1√
2πb2

e
i
(

a2

2b2
x2

2
−

x2u2

b2
+

d2

2b2
u2

2
−π

4

)

, b2 6= 0
√
d2e

i c2d2

2
u2

2 , b2 = 0

Here,x = x1e1+x2e2 andu = u1e1+u2e2. e1 ande2 are
the unit 2D vectors and orthogonal to each other. It is noted
that for bi = 0, i = 1, 2 the QLCT of a signal is essentially
a chirp multiplication and it is of no particular interest for
our objective in this work. Hence, without loss of generality,
we setbi 6= 0 in the following section unless stated otherwise.
Under some suitable conditions, the QLCT above is invertible
and the inversion is given inDefinition 2.

Definition 2 Supposef ∈ L1
(

R
2,H

)

, then the inversion of
the QLCT off is given by [13, 14]

f(x) = {LH

A1,A2
}−1{f}(x)

=

∫

R2

K−i
A1

(x1, u1)LH

A1,A2
{f} (u)K−j

A2
(x2, u2)du

(13)

Remark 1 WhenA1 = A2 =

[

0 1
−1 0

]

, Eq.(12) and E-

q.(13) reduce to the QFT and inverse QFT off(x).

Many other important properties of the QLCT have been
derived [13, 14] and an application of the QLCT to study the
generalized swept-frequency filters was presented in [22].To
emphasize, in this paper, we mainly investigate UP on the
two-sided QLCT. Without explanation,F denotes the two-
sided QFT operator andLH

A1,A2
is the two-sided QLCT oper-

ator.
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Lemma 1 The conventional UP in Eq.(1) has been general-
ized for the right-sided QFT firstly by Bahri [10] in the name
of component-wise UP, which takes the form

∫

R2

x2
k |f(x)|

2
dx ·

∫

R2

u2
k |Fr {f} (u)|2 du

≥ 1

4

(
∫

R2

|f(x)|2 dx
)2

, k = 1, 2

(14)

wherex,u ∈ R
2,x = x1e1 + x2e2,u = u1e1 + u2e2. Fr

is the right-sided QFT operator.

The result inLemma 1 provides a lower bound on the
product of effective widths of a quaternion-valued signal in
the spatial and frequency domains, which is also valid for the
left-sided QFT and two-sided QFT.

3. MAIN RESULTS

In this section, some novel results of UPs are provided.

Theorem 1 Letf ∈ L1
(

R
2,H

)

∩L2
(

R
2,H

)

be a quaternion-
valued signal with unit energy, then we derive

∫

R2

u2
1

∣

∣LH

A1,A2
{f} (u)

∣

∣

2
du ·

∫

R2

v21
∣

∣LH

A3,A4
{f} (v)

∣

∣

2
dv

≥ (a3b1 − a1b3)
2

4
(15)

and
∫

R2

u2
2

∣

∣LH

A1,A2
{f} (u)

∣

∣

2
du ·

∫

R2

v22
∣

∣LH

A3,A4
{f} (v)

∣

∣

2
dv

≥ (a4b2 − a2b4)
2

4
(16)

Proof 1 Firstly, without loss of generality, we letF =
∫

R2 |f(x)|2 dx = 1 andb21 + b22 + b23 + b24 + b25 + b26 6= 0. Set

F{g}(u) = e
−i

d5

2b5
u2

1LH

A1,A2
{f} (u)e−j

d6

2b6
u2

2 (17)

and

g(x) =
1

√

(2π)2

∫

R2

eix1u1F {g} (u)ejx2u2du (18)

According toLemma 1, we derive

∫

R2

x2
k |g(x)|2 dx ·

∫

R2

u2
k |F {g} (u)|2 du

≥ 1

4

(
∫

R2

|g(x)|2 dx
)2

, k = 1, 2

(19)

Note the fact that

|F{g}(u)| =
∣

∣

∣
e
−i

d5

2b5
u2

1LH

A1,A2
{f} (u)e−j

d6

2b6
u2

2

∣

∣

∣

=
∣

∣LH

A1,A2
{f} (u)

∣

∣

(20)

We get

∫

R2

u2
k |F {g} (u)|2 du =

∫

R2

u2
k

∣

∣LH

A1,A2
{f} (u)

∣

∣

2
du

(21)

From the definition of the QFT, we obtain

g

(

x1

b5
,
x2

b6

)

=
1

√

(2π)2

∫

R2

e
i
x1

b5
u1F {g} (u)ej

x2

b6
u2du

=
1

2π

∫

R2

e
i
x1

b5
u1e

−i
d5

2b5
u2

1LH

A1,A2
{f} (u)e−j

d6

2b6
u2

2e
j
x2

b6
u2du

=
√

b5b6e
i

a5

2b5
x2

1
−iπ

4

·
∫

R2

K−i
A5

(x1, u1)LH

A1,A2
{f} (u)K−j

A6
(x2, u2)du · ej

a6

2b6
x2

2
−jπ

4

=
√

b5b6e
i

a5

2b5
x2

1
−iπ

4

· LH

A
−1

5
,A

−1

6

{

LH

A1,A2
{f} (u)

}

(x) · ej
a6

2b6
x2

2
−jπ

4

=
√

b5b6e
i

a5

2b5
x2

1
−iπ

4 · LH

A
−1

5
A1,A

−1

6
A2

{f} (x) · ej
a6

2b6
x2

2
−jπ

4

Here, the additive property of the QLCT is used in the last
equality. Furthermore,

∣

∣

∣

∣

g

(

x1

b5
,
x2

b6

)∣

∣

∣

∣

2

= b5b6

∣

∣

∣
LH

A
−1

5
A1,A

−1

6
A2

{f} (x)
∣

∣

∣

2

(22)

Set

A3 = A−1

5 A1 =

[

d5 −b5
−c5 a5

] [

a1 b1
c1 d1

]

=

[

a3 b3
c3 d3

]

(23)

A4 = A−1
6 A2 =

[

d6 −b6
−c6 a6

] [

a2 b2
c2 d2

]

=

[

a4 b4
c4 d4

]

(24)

then we haveb5 = a3b1 − a1b3 and b6 = a4b2 − a2b4. In
addition, we have

∫

R2

x2
1 |g(x)|2 dx

=

∫

R2

(

x1

b5

)2 ∣
∣

∣

∣

g

(

x1

b5
,
x2

b6

)
∣

∣

∣

∣

2

· 1

b5b6
dx

=

∫

R2

(

x1

b5

)2

·
∣

∣LH

A3,A4
{f} (x)

∣

∣

2
dx

(25)
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That is to say,

∫

R2

x2
1 |g(x)|2 dx ·

∫

R2

u2
1 |F {g} (u)|2 du

=

∫

R2

(

x1

b5

)2
∣

∣LH

A3,A4
{f} (x)

∣

∣

2
dx

·
∫

R2

u2
1

∣

∣LH

A1,A2
{f} (u)

∣

∣

2
du ≥ 1

4

(26)

After a simple calculation, we derive

∫

R2

x2
1

∣

∣LH

A3,A4
{f} (x)

∣

∣

2
dx ·

∫

R2

u2
1

∣

∣LH

A1,A2
{f} (u)

∣

∣

2
du

≥ (a3b1 − a1b3)
2

4
(27)

In a similar way, it is easy to derive

∫

R2

x2
2

∣

∣LH

A3,A4
{f} (x)

∣

∣

2
dx ·

∫

R2

u2
2

∣

∣LH

A1,A2
{f} (u)

∣

∣

2
du

≥ (a4b2 − a2b4)
2

4
(28)

By takingx = v, the theorem is complete.

Remark 2 Particularly, whenA1 = A2 =

[

0 1
−1 0

]

and

A3 = A4 =

[

1 0
0 1

]

, Eq.(15)and Eq.(16) reduce to Eq.(14);

whenAk =

[

ak bk
ck dk

]

, k = 1, 2 andA3 = A4 =

[

1 0
0 1

]

,

Eq.(15)and Eq.(16)reduce to the corresponding result of the
QLCT in spatial and frequency domain [19].

Theorem 2 Letf ∈ L1
(

R
2,H

)

∩L2
(

R
2,H

)

be a quaternion-
valued signal, then we derive a directional UP related to the
QLCT,

∫

R2

|u|2
∣

∣LH

A1,A2
{f} (u)

∣

∣

2
du ·

∫

R2

|v|2
∣

∣LH

A3,A4
{f} (v)

∣

∣

2
dv

≥ (|a3b1 − a1b3|+ |a4b2 − a2b4|)2
4

(29)

Proof 2 For the sake of convenience, here we notate

∆u2
k =

∫

R2

u2
k

∣

∣LH

A1,A2
{f} (u)

∣

∣

2
du, k = 1, 2 (30)

∆v2k =

∫

R2

v2k
∣

∣LH

A3,A4
{f} (u)

∣

∣

2
dv, k = 1, 2 (31)

Then, we obtain
∫

R2

|u|2
∣

∣LH

A1,A2
{f} (u)

∣

∣

2
du ·

∫

R2

|v|2
∣

∣LH

A3,A4
{f} (v)

∣

∣

2
dv

=
(

∆u2
1 +∆u2

2

)

·
(

∆v21 +∆v22
)

=∆u2
1∆v21 +∆u2

1∆v22 +∆u2
2∆v21 +∆u2

2∆v22

≥ ∆u2
1∆v21 + 2

√

∆u2
1∆v22 ·∆u2

2∆v21 +∆u2
2∆v22

≥ (a3b1 − a1b3)
2

4
+ 2

√

(a3b1 − a1b3)
2

4
· (a4b2 − a2b4)

2

4

+
(a4b2 − a2b4)

2

4

=
(|a3b1 − a1b3|+ |a4b2 − a2b4|)2

4

The first inequality is obtained bya2 + b2 ≥ 2ab. The second
inequality is derived usingTheorem 1. This completes the
proof.

Remark 3 The QFT directional UP is only one special case

of Theorem 2 whenA1 = A2 =

[

0 1
−1 0

]

andA3 = A4 =
[

1 0
0 1

]

(see [23],Theorem 13).

Corollary 1 WhenA3 = A4 =

[

1 0
0 1

]

, a directional UP of

the QLCT in spatial and frequency is given as following
∫

R2

|x|2 |f(x)|2 dx ·
∫

R2

|u|2
∣

∣LH

A1,A2
{f} (u)

∣

∣

2
du

≥ (|b1|+ |b2|)2
4

(32)

4. CONCLUSIONS

In this paper, based on the relationship between the QFT
and QLCT, two novel UPs of the two-sided QLCT are pre-
sented. One is a general form of the component-wise UP,
and the other is an extended form of the directional UP. Both
of new derived results describe lower bounds of spreads of
a quaternion-valued signal in arbitrary two different QLCT
domains, which include those of UPs in the spatial and fre-
quency domain as its special case. They offer a method to
estimate the effective bandwidth in the QLCT settings. Be-
sides, the discrete UPs relate closely to the problem of signal
recovery; novel derived UPs in the QLCT domains can fur-
ther contribute to solving the problem of quaternion-valued
signal recovery in the practical applications.
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