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ABSTRACT

We propose an iso-latitude sampling scheme for the representation
of band-limited signals on the sphere. The proposed scheme is de-
signed as a variant of the widely used Hierarchical Equal Area iso-
Latitude Pixelization (HEALPix) scheme on the sphere. We use
HEALPix grid of resolution Nside to represent a signal of band-
limit (spherical harmonic degree) L. To reduce the number of sam-
ples, the proposed algorithm takes only L iso-latitude rings out of
4Nside − 1 rings of the HEALPix. This selection is carried out by
ensuring that the spherical harmonic transform (SHT) of the signal
is computed accurately from the samples. The number of samples
required by the proposed sampling scheme is smaller than that re-
quired by HEALPix by at least a factor of 3/2. For the proposed
sampling scheme, we also formulate the spherical harmonic trans-
form and conduct numerical experiments to evaluate the number of
samples required by the proposed sampling scheme and the accuracy
of the associated SHT.

Index Terms— Sampling, HEALPix, unit 2-sphere, spherical
harmonic transform, band-limited signals

1. INTRODUCTION

There are many disciplines of science and engineering in which sig-
nals exhibit angular dependence and hence, are inherently defined
on the sphere. Areas where spherical signal processing techniques
have been extensively used include wireless communication [1],
computer graphics [2], medical imaging [3], acoustics [4], quantum
chemistry [5], cosmology [6] and geodesy [7], to name a few. In
many of these applications, signal is often analysed in the spatial or
harmonic domain. The transformation from the spatial to harmonic
domain is enabled by spherical harmonic transform (SHT).

As we can only process spatially discrete signals, many sam-
pling schemes have been proposed for the computation of SHT [8–
12]. Equiangular sampling schemes in [9, 10] enable exact compu-
tation of SHT but suffer from massive oversampling near the poles
which renders them sub-optimal for certain applications. Equal area
and iso-latitude tessellation schemes are most desirable because not
only do they avoid oversampling at the poles, they enable separa-
tion of variables which supports faster computation of SHT. One of
the widely adopted among such schemes is the Hierarchical Equal
Area iso-Latitude Pixelization (HEALPix) [12]. It supports hierar-
chical tree structure for the database of samples, facilitating vari-
ous topological methods of analysis and allowing for fast compu-
tation of transforms through fast look-up of neighboring data ele-
ments. SHT associated with the HEALPix utilizes all the samples
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on the grid to evaluate the transform as an approximate quadrature.
Although, HEALPix supports accurate computation of SHT, it is a
high-resolution sampling grid and therefore, it is very desirable to
design a sampling scheme that maintains the same order of accuracy
in the computation of SHT but takes fewer number of samples.

In this context, we address the following research questions in
this work:

1. Can we reduce the number of samples required by HEALPix
for the computation of SHT?

2. Does the proposed reduction in number of samples compro-
mise the accuracy of SHT?

In addressing these questions, we organize the rest of the paper as
follows. In Section 2, we review the mathematical background for
signal and harmonic analysis on the sphere and present an overview
of the HEALPix sampling scheme. In Section 3, we formulate the
SHT, outline the sampling requirements and devise an algorithm to
design the sampling scheme. Before we present the concluding re-
marks in Section 5, we evaluate the reduction in number of samples
achieved by the proposed sampling scheme and carry out accuracy
analysis of the formulated SHT in Section 4.

2. MATHEMATICAL PRELIMINARIES

In this section, we present the necessary mathematical background
for spatial and spectral representations of signals on the sphere and
review the HEALPix sampling scheme.

2.1. Signals on 2-Sphere

We consider complex-valued signals f(θ, φ) on the 2-sphere (or
sphere), denoted by S

2. Here θ ∈ [0, π] is the co-latitude angle
measured from the positive z-axis and φ ∈ [0, 2π] is the longitude
angle measured from the positive x-axis in the x-y plane. The inner
product between two such signals f, g is given by

〈f, g〉 �
∫
S2

f(θ, φ)g(θ, φ) sin θdθdφ, (1)

where (·) denotes the complex conjugate operation, sin θdθdφ is the
differential area element on the sphere and integration is carried out

over the whole sphere, i.e.,

∫
S2

=

∫ π

θ=0

∫ 2π

φ=0

. With the inner prod-

uct defined in (1), the set of signals on the sphere form a Hilbert
space L2(S2). Energy and norm of the signal f are given by 〈f, f〉
and ‖f‖ � 〈f, f〉1/2 respectively.
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2.2. Spherical Harmonics

The Hilbert space L2(S2) is separable and contains a complete set of
orthonormal basis functions referred to as spherical harmonic func-
tions or spherical harmonics for short, defined as [13]

Y m
� (θ, φ) �

√
2�+ 1

4π

(�−m)!

(�+m)!
Pm
� (cos θ)eimφ, (2)

for integer degree � ≥ 0 and order1 |m| ≤ �. Here Pm
� (cos θ) is

the associated Legendre polynomial of degree � and order m [13].
Since spherical harmonics form a complete set of orthonormal basis
functions on the sphere, any signal f ∈ L2(S2) can be expressed as

f(θ, φ) =
∞∑
�=0

�∑
m=−�

(f)m� Y m
� (θ, φ), (3)

where

(f)m� = 〈f, Y m
� 〉 =

∫
S2

f(θ, φ)Y m
� (θ, φ) sin(θ)dθdφ (4)

is the spherical harmonic (spectral) coefficient of degree � and or-
der m and constitutes the spectral representation of the signal. The
transformation (spatial to spectral) of the signal in (4) is referred
to as the spherical harmonic transform (SHT) and the one (spectral
to spatial) given in (3), is referred to as the inverse SHT (ISHT).
A signal is considered band-limited to degree L if (f)m� = 0 for
�,m ≥ L. Set of all such band-limited signals on the sphere forms
an L2-dimensional subspace of L2(S2) and is denoted by HL. For
any signal f ∈ HL, the sum over degree in (3) is truncated at L− 1.

2.3. Hierarchical Equal Area iso-Latitude Pixelization

Hierarchical Equal Area iso-Latitude Pixelization [12], HEALPix
for short, takes three iso-latitude rings of samples with four sam-
ples in each ring, dividing the sphere into 12 equal area regions at
the base-resolution level. Sampling grid density is parameterized by
Nside which is defined as the number of divisions along the side of a
base-resolution pixel needed to reach a desired high-resolution tes-
sellation. An increase in resolution level by one divides each of the
equal area regions on the sphere into four sub-regions. Total num-
ber of samples on the HEALPix grid is 12N2

side and are placed into
three zones: Equatorial (−2/3 < z < 2/3), North polar (z ≥ 2/3)
and South polar (z ≤ −2/3), where z = cos(θ). Total number of
iso-latitude rings on the sampling grid is 4Nside − 1 out of which
2Nside − 1 are located in the equatorial zone and Nside are located
in each polar zone. All equatorial rings contain maximum number
of samples per ring, equal to 4Nside, whereas the polar zone rings
contain varying number of samples.

SHT associated with the HEALPix is computed by the approxi-
mate quadrature rule2 given by

(f̂)m� =
4π

Npix

Npix−1∑
k=0

f(θk, φk)Y m
� (θk, φk). (5)

Since the quadrature approximation in (5) is the zeroth-order estima-
tor, the Jacobi iterative method is applied on it to improve its accu-
racy.

1| · | denotes the absolute value
2http://healpix.sourceforge.net/documentation.php

3. EFFICIENT SPHERICAL HARMONIC TRANSFORM
FOR HEALPIX

Now we address the first question posed in Section 1 and propose
a method for the computation of spherical harmonic transform of
a band-limited signal f ∈ HL using only a subset of samples on
the HEALPix grid. We propose to take samples on L iso-latitude
rings with locations indexed in the vector θ ≡ [θ0, θ1, . . . , θL−1]

T
.

Before we determine the location of these iso-latitude rings and the
number of samples along each ring, we present the formulation of
SHT.

3.1. Spherical Harmonic Transform – Formulation

For a signal f ∈ HL, its spherical harmonic coefficients of order
|m| < L can be defined in terms of the Fourier transform of the
signal along φ in an iso-latitude ring placed at θ = θk as

Gm(θk) �
2π∫
0

f(θk, φ)e
−imφdφ

= 2π

L−1∑
�=|m|

(f)m� P̃m
� (θk), (6)

where P̃m
� (θk) � Y m

� (θk, 0) is the scaled associated Legendre
polynomial. By defining a column vector gm as a vector of Fourier
transform of the signal at L− |m| different iso-latitude rings, given
by

gm �
[
Gm(θ|m|), Gm(θ|m|+1), . . . , Gm(θL−1)

]
, (7)

and a column vector fm containing spherical harmonic coefficients
of order m as

fm ≡ [
fm
|m|, f

m
|m|+1, . . . , f

m
|L−1|

]
, (8)

we can compactly express L−|m| equations of the form given in (6)
as

gm = 2πPmfm, |m| < L, (9)

where

Pm �

⎡⎢⎢⎢⎢⎣
P̃m
|m|(θ|m|) P̃m

|m|+1(θ|m|) · · · P̃m
L−1(θ|m|)

P̃m
|m|(θ|m|+1) P̃m

|m|+1(θ|m|+1) · · · P̃m
L−1(θ|m|+1)

...
...

. . .
...

P̃m
|m|(θL−1) P̃m

|m|+1(θL−1) · · · P̃m
L−1(θL−1)

⎤⎥⎥⎥⎥⎦ .

(10)
It becomes clear from (10) that in order for Pm to be well-
conditioned, Fourier transform in (6) must be evaluated along φ
for at least L different iso-latitude rings. By computing Gm(θk) at
different iso-latitude rings placed at θk, k = |m|, |m|+1, . . . , L−1
and inverting Pm in (9), we can compute the spherical harmonic
coefficients of order m and degrees |m| ≤ � ≤ L− 1.

3.2. Spherical Harmonic Transform – Computation

Spectral coefficients of order m contained in vector fm can be re-
covered from (9) provided gm is computed correctly and Pm is
well-conditioned to be invertible. Consequently, the accuracy of
the formulated transform is dictated by the computation of Gm(θk)
and condition number of Pm. Accurate computation of Gm(θk)
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depends on the number of samples along φ in the chosen iso-latitude
ring and the condition number of Pm depends on the locations
θ|m|, θ|m|+1, . . . , θL−1 of the iso-latitude rings.

3.2.1. Avoiding Aliasing in the Computation of Gm(θk)

Using (6) and changing the order of summation in (3), a signal
f band-limited to L and evaluated at samples in an arbitrary iso-
latitude ring placed at θk can be written as

f(θk, φ) =
1

2π

L−1∑
m=−(L−1)

Gm(θk)e
imφ. (11)

We observe that this signal has contribution from 2L − 1 complex
exponentials eimφ, |m| < L. We therefore, require at least 2L − 1
samples in the ring placed at θk to avoid the effects of aliasing on
Gm(θk). This is true regardless of the choice of the ring. However,
we note that if we know the spectral coefficients of order |m| ≤
p ≤ L − 1, we can subtract their contribution from the samples of
the signal in the iso-latitude ring placed at θ|m|−1, if this ring does
not have 2L − 1 samples. This ring is then required to have only
at least 2|m| − 1 samples for G|m|−1(θ|m|−1) to be free of any
aliasing errors. We further elaborate on this concept. Equation (9)
can be used to solve for (f)L−1

L−1 by computing GL−1(θL−1) at a ring
placed at θL−1 and having at least 2L−1 samples. If the next ring at
θL−2 has at least 2L−1 samples, we compute GL−2(θL−2) without
aliasing. However, if the number of samples is less than 2L− 1 but
at least 2L− 3, then we have to subtract the contribution of (f)L−1

L−1

and (f)
−(L−1)
L−1 from the samples of f in the ring placed at θL−2 and

update it as

f(θL−2, φ) ← f(θL−2, φ)− f̃L−1(θL−2, φ), (12)

where

f̃m(θk, φ) =

L−1∑
�=|m|

{(f)m� P̃m
� (θk)e

imφ + (f)−m
� P̃−m

� (θk)e
−imφ}

=
1

2π
(Gm(θk)e

imφ +G−m(θk)e
−imφ)

(13)

is the contribution of spectral coefficients of order ±m, for all de-
grees |m| ≤ � ≤ L − 1. Hence, we require the iso-latitude ring at
θL−1 to have at least 2L − 1 samples, the iso-latitude ring at θL−2

to have at least 2L− 3 samples and so on.

3.3. Sampling Scheme – Requirements

Following the philosophy presented in the previous section and us-
ing the formulation given in (9), we note that SHT of the signal
band-limited to L can be accurately computed by taking its sam-
ples over iso-latitude sampling scheme of L rings located at θk, k =
0, 1, . . . , L− 1, provided the sampling scheme fulfills the following
requirements:

(R1) The iso-latitude ring located at θk has at least 2k+ 1 samples
along longitude.

(R2) Ring locations, θk, k = 0, 1, . . . , L − 1 are chosen such that
the matrix Pm given in (10) is well-conditioned for each3

m = 0, 1, . . . , L− 1.

3We only need to ensure that Pm is well-conditioned for non-negative or-
ders m as P−m = (−1)mPm which follows from the conjugate symmetry

of spherical harmonics given by Y −m
� (θ, φ) = (−1)mY m

� (θ, φ).

SHT can be computed accurately if sampling scheme design takes
into account these requirements as R1 and R2 ensure the accurate
computation of gm and accurate inversion of (10) for each |m| < L
respectively.

3.4. Sampling Scheme – Design

We devise an algorithm to design the sampling scheme comprised of
subset of HEALPix samples. Before we present the algorithm that
selects the iso-latitude rings of samples from the HEALPix grid tak-
ing into account the sampling requirements, we establish a relation
between the HEALPix resolution parameter Nside and band-limit L.
Since the number of samples required in the first ring is 2L− 1 and
all the rings in equatorial zone on the HEALPix grid contain max-
imum number of samples per ring, i.e., 4Nside, first ring must be
chosen from the equatorial zone. This puts an upper bound on the
band-limit of the signal, i.e.,L ≤ 2Nside. Hence, for a given sam-
pling grid with resolution parameter Nside, we can compute the SHT
for a maximum band-limit of 2Nside.

To select the iso-latitude rings of samples from the HEALPix
grid with resolution parameter Nside, we propose the following iso-
latitude ring selection algorithm taking into account R1 and R2. We
use θ̃h and nh to denote the location of an iso-latitude ring and the
number of samples along φ in it with h = 1, 2, . . . , H , where H =
4Nside − 1 is the total number of rings on the HEALPix grid.

Procedure 1 Ring Selection Algorithm

Require: θk, k = 0, 1, . . . , L− 1
1: procedure RING SELECTION(θ̃h, Nside)

2: Θ = {θ̃h}Hh=1

3: θL−1 = π/2 (first ring)

4: for m = L− 2, L− 3, . . . , 0 do

5: Θm = {θ̃h ∈ Θ | nh ≥ 2m+ 1}
6: Choose θm ∈ Θm which minimizes the condition

number of Pm

7: end for

8: return θk, k = 0, 1, . . . , L− 1.
9: end procedure

The proposed algorithm identifies the rings from the HEALPix
grid in such a way that each Pm matrix is well-conditioned and the
ring located at θk has at least 2k + 1 samples along φ, thus serving
both sampling design requirements and ensuring the accurate com-
putation of SHT.

3.5. Multipass SHT

Like HEALPix, we also employ an iterative method to further im-
prove the accuracy of the transform. After computing the spectral
coefficients in the first pass, we reconstruct the signal in spatial do-
main using (3). Spectral coefficients of the difference between orig-
inal and reconstructed spatial signals are computed and added to the
previously computed coefficients, obtaining the spectral coefficients
for the second pass. This process is continued until the quantity√
eHe either exceeds its value obtained in the previous pass or drops

below a preset threshold of 10−16, where e is the difference between
the original and reconstructed spatial signal column vectors and (.)H

denotes the complex conjugate transpose.
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Fig. 1: Number of samples used by HEALPix and proposed
sampling scheme along with the theoretical bound established in
Lemma 1, for band-limits in the range 2 ≤ L ≤ 512.

Fig. 2: Visual comparison of sampling density between HEALPix
and proposed sampling scheme for bandlimit L = 32.

4. EVALUATION

In this section, we compare the accuracy of the formulated SHT with
SHT associated with the HEALPix and evaluate the reduction in
number of samples achieved by the proposed sampling scheme. The
formulated SHT is efficient compared to the one associated with the
HEALPix in the sense that it uses lesser number of samples to accu-
rately compute the spectral coefficients.

4.1. Reduction in Number of Samples

Since our ring selection algorithm chooses the iso-latitude rings from
the HEALPix grid by minimizing the condition number of the ma-
trix Pm, we cannot analytically determine the exact decrease in
the number of samples achieved by the proposed sampling scheme.
However, we can work out the minimum guaranteed decrease in the
number of samples which is presented in the following Lemma.

Lemma 1 (Lower-bound on the Reduction in Number of Samples).
The proposed sampling scheme requires at least 3/2 times less num-
ber of samples than HEALPix for the accurate computation of SHT
of a signal band-limited to L ≤ 2Nside.

Proof. Since Lmax = 2Nside denotes the maximum band-limit for a
given grid resolution parameter Nside and the number of samples on
the HEALPix grid is Npix = 12N2

side, we have Lmax =
√

Npix/3.
As the proposed sampling scheme requires L(≤ Lmax) iso-latitude
rings for the accurate computation of SHT, total number of samples
in the proposed sampling scheme, denoted by N , is given by N ≤
L(4Nside) ≤ Lmax(4Nside) or Npix/N ≥ 3/2.
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Fig. 3: Emax and Emean between spectral coefficients of the original
and reconstructed signals, for band-limits in the range 2 ≤ L ≤ 512.

In Fig. 1, we plot the number of samples used by SHT associated
with the HEALPix, number of samples required by SHT formulated
for the proposed sampling scheme and the theoretical bound estab-
lished in Lemma 1 for band-limits in the range 2 ≤ L ≤ 512. It
can be seen that at moderately large band-limits, the proposed sam-
pling scheme, in comparison with HEALPix, requires about half the
number of samples. Fig. 2 provides a visual comparison of the num-
ber of samples used by HEALPix and proposed sampling scheme to
compute SHT accurately for bandlimit L = 32.

4.2. Accuracy Analysis

SHT formulated for the proposed sampling scheme is evaluated on
the test signal generated using test spectral coefficients, (fT )

m
� , uni-

formly distributed between −1 and 1 in real and imaginary parts. We
denote by (fR)

m
� the reconstructed spectral coefficients. For both

the sampling schemes, we evaluate the maximum and mean errors
defined as

Emax � 1

‖fT ‖ max |(fT )m� − (fR)
m
� |, (14)

Emean � 1

‖fT ‖
L−1∑
�=0

�∑
m=−�

|(fT )m� − (fR)
m
� |. (15)

These errors are averaged over ten different realizations of the test
signal for band-limits in the range 2 ≤ L ≤ 512 and plotted in
Fig. 3. It is evident that the proposed sampling scheme, although
requires lesser number of samples, enables accurate computation of
SHT with errors on the order of numerical precision.

5. CONCLUSION

We have presented an iso-latitude sampling scheme as a variant
of the widely used Hierarchical Equal Area iso-Latitude Pixeliza-
tion (HEALPix) scheme for the representation and reconstruction of
band-limited signals on the sphere. The proposed sampling scheme
requires at least 3/2 times less number of samples than HEALPix to
accurately compute the spherical harmonic transform (SHT) of a sig-
nal band-limited to spherical harmonic degree L ≤ 2Nside, where
Nside is the HEALPix resolution parameter. We have also conducted
numerical experiments, demonstrating the accurate computation of
SHT with errors on the order of numerical precision.
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