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ABSTRACT

Self-reset analog-to-digital converters (ADCs) allow for digitization
of a signal with a high dynamic range. The reset action is equiv-
alent to a modulo operation performed on the signal. We consider
the problem of recovering the original signal from the measured
modulo-operated signal. In our formulation, we assume that the un-
derlying signal is Lipschitz continuous. The modulo-operated signal
can be expressed as the sum of the original signal and a piecewise-
constant signal that captures the transitions. The reconstruction re-
quires estimating the piecewise-constant signal. We rely on local
smoothness of the modulo-operated signal and employ wavelets with
sufficient vanishing moments to suppress the polynomial compo-
nent. We employ Daubechies wavelets, which are most compact for
a given number of vanishing moments. The wavelet filtering pro-
vides a sequence consisting of a sum of scaled and shifted versions
of a kernel derived from the wavelet filter. The transition locations
are estimated from the sequence using a sparse recovery technique.
We derive a sufficient condition on the sampling frequency for en-
suring perfect reconstruction of the smooth signal. We validate our
reconstruction technique on a signal consisting of sinusoids in both
clean and noisy conditions and compare the reconstruction quality
with the recently developed repeated finite-difference method.

Index Terms— Wavelets, unlimited sampling, self-reset ADC,
vanishing moments, sparse recovery.

1. INTRODUCTION

The standard process of digitizing a signal involves bandlimiting it
by passing it through an anti-aliasing filter and then sampling using
an analog-to-digital converter (ADC). The sampling rate is deter-
mined by the well known Shannon-Nyquist theorem, according to
which a bandlimited signal can be reconstructed exactly by taking
the measurements of the signal at the rate which is at least twice
the signal’s bandwidth [1]. The signals that we encounter in real
world are not bandlimited and have a wide dynamic range. In prac-
tice, ADCs have a finite dynamic range [−λ, λ], and when the in-
put signal exceeds this range, the signal gets clipped (cf. Fig. 1).
Henceforth, we refer to these ADCs as clipping-ADCs (C-ADCs).
The problem of restoring the signal from its clipped version is a fre-
quently encountered problem [2–5]. Typically, the restoration meth-
ods nearly mitigate the effect of clipping at the expense of oversam-
pling. The advancement of complementary metal oxide semiconduc-
tor (CMOS) technology has enabled one to build a large variety of
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Fig. 1. An illustration of the transfer characteristics of a clipping-
ADC and a self-reset-ADC with the thresholds at ±λ.

solutions for widening the dynamic range of CMOS image sensors
(cf. [6–8] and references therein).

Another class of ADCs that has been developed employ a re-
set technique every time the input signal goes beyond the dynamic
range of the ADC. These ADCs are called folding ADCs [9] or self-
reset ADCs (SR-ADCs) [10, 11]. When the signal reaches the upper
(lower) threshold point, it folds back by a factor of 2λ and starts
at the lower (upper) threshold. This phenomenon is equivalent to
applying a modulo operation on the input signal. The acquisition
technique aids in handling signals with high dynamic range. Most
of the CMOS SR-ADCs are developed for image acquisition with
pixel-level reset ability, and have found applications in brain imag-
ing [12]. The transfer characteristics of an SR-ADC vis-à-vis the
C-ADC, with saturation thresholds at λ and −λ are illustrated in
Fig. 1. If the input signal x(t) has a high dynamic range, which ex-
ceeds the saturation thresholds, the output of a C-ADC, yC-ADC(t)
(blue) is a clipped version of x(t) while the output of a SR-ADC,
ySR-ADC(t) (red) has fold-back, which captures all the variations in
the input signal. Mathematically, the output y(t) of the SR-ADC
is represented as a modulo operation performed on the input signal
x(t) and is given by

y(t) =Mλ{x(t)} := mod (x(t) + λ, 2λ)− λ, (1)

where λ > 0 is the saturation threshold. The modulo operation
in (1) is defined in such a way that the output signal has the range
[−λ, λ]. Figure 2(a) shows an input signal and its modulo-operated
signal. Observe that the output signal y(t) is actually the difference
between x(t) and a piecewise constant signal z(t), that is

y(t) = x(t)− z(t), (2)

z(t) =
∑
k

αk1[tk,tk+1](t), (3)
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where z(t) takes the values that are integer multiples of 2λ, that is
range(z) ∈ 2λZ, 1[t1,t2] is the indicator function on [t1, t2], and
{tk}k∈Z denotes the folding instants with tk > tk−1,∀k. Fig-
ure 2(b) shows the signal z(t) corresponding to the signal x(t) in
Fig. 2(a). Now, along with y(t), the parameters {tk, αk}k∈Z com-
pletely determine the signal. Also, it is to be noted that αk+1 =
αk ± 2λ based on whether the kth transition is positive or negative,
that is, whether x(t+k ) is greater than or less than x(t−k ), respectively.
In practice, we have access to the samples of y(t) that are obtained at
the intervals of T . The discrete counterparts of (2) and (3) are given
as

y(nT ) = x(nT )− z(nT ),

z(nT ) =
∑
k

αk1Jnk,nk+1K(nT ), (4)

where y(nT ) = Mλ{x(nT )}, and {nk}k∈Z ∈ TZ denotes the
folding instants with nk > nk−1, ∀k. In this context, we seek to
recover {x(nT )} from the measurements {y(nT )}.

Over the past six decades, Shannon’s sampling theory has been
extended to a wider class of signals that are not necessarily bandlim-
ited such as signals in shift-invariant spaces [13], union of subspaces
[14,15], multi band signals [16–18], finite-rate-of-innovation signals
[19,20], etc.. Although hardware development of SR-ADCs has sig-
nificantly improved over the past decade, the theoretical framework
for sampling and reconstruction from the samples of modulo oper-
ated signals has been relatively unexplored. The first seminal con-
tribution in this direction was made recently by Bhandari et al. [21],
who also effectively introduced the problem to the signal processing
community and developed the first algorithm with provable recon-
struction guarantees. The key idea proposed by them leverages on
the fact that the N th-order finite difference of a sequence x(nT ) ob-
tained by sampling a bandlimited signal x(t) is bounded from above
and N can be chosen such that ‖∆Nx‖∞ < λ, where the first-order
finite-difference is defined as ∆x(n) = x((n+1)T )−x(nT ). They
also provided sufficient conditions on the sampling rate for guaran-
teed reconstruction of x(nT ) from y(nT ). Henceforth, we refer to
this method as repeated finite-difference (RFD) method, which also
forms the benchmark for performance comparison.

1.1. This Paper

In this paper, we address both the continuous-domain problem:

Given y(t) =Mλ{x(t)}, reconstruct x(t), (5)

and its discrete-domain counterpart:

Given y(nT ) =Mλ{x(nT )}, reconstruct x(nT ). (6)

In Section 2, we consider the continuous domain problem where we
employ properties of wavelets to annihilate polynomials and esti-
mate the piecewise smooth signal z(t) given by (3).

The discrete-domain counterpart (Section 3) requires the prop-
erty of annihilation of discrete polynomials for wavelet filters. Em-
ploying the Daubechies wavelet of order p, we present conditions
on the sampling interval to guarantee reconstruction in the context
of Lipschitz continuous signals. The methodology involves wavelet
filtering and computing the folding instants nk in (4). The problem
of reconstruction of the folding instants is shown to be equivalent to
a sparse recovery problem in an appropriate basis, which is solved
using the LASSO formulation. Unlike the phase unwrapping prob-
lem, where one has access to continuous wrapped phase, in problem

x(t)
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y(t)
(a)

(b)
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Fig. 2. Modulo operation: (a) Input signal x(t) (in blue) and its
modulo version y(t) (in red); and (b) piecewise-constant signal z(t).

(6), we have access to the discrete version of the wrapped signal.
In order to validate the theoretical developments, we present

simulation results demonstrating reconstruction of a signal from its
modulo measurements (Section 4). We consider both noise-free and
noisy measurement scenarios, and carry out the proposed reconstruc-
tion. Further, we compare our results with that of RFD method for
various signal-to-noise ratios (SNRs).

2. CONTINUOUS-DOMAIN ANALYSIS

In this section, we address (5) where we assume suitable regularity
conditions on x(t). In view of (2), it suffices to determine z(t),
which, in turn, is characterized by the parameters {tk, αk}k∈Z given
by the representation in (3). Thus, the problem (5) is now reduced to
computing {tk, αk}k∈Z from y(t).

Our approach relies on annihilating a polynomial of degree p, for
which we employ a wavelet. In this context, we recall the following
definition for vanishing moments of a wavelet. The notation J0, pK
indicates the set of integers from 0 to p.

Definition 1 (Vanishing moments). A wavelet ψ has p+1 vanishing
moments if

∫
tkψ(t) dt = 0, for k ∈ J0, pK.

If x(t) is a polynomial of degree p, then a wavelet ψ that has
p+ 1 vanishing moments annihilates it, that is,

(x ∗ ψ)(t) = 0, (7)

for all t ∈ R. We employ (7) to locate the folding instants {tk}. The
convolution of y(t) with ψ(t) provides us with a sum of time-shifted
versions of a kernel ξ(t) derived from the wavelet ψ(t), as detailed
in the following lemma.

Lemma 1. Let x(t) be a polynomial of degree p, ψ(t) be a wavelet
with p + 1 vanishing moments, and y(t) = Mλ{x(t)}. Then, we
have,

yψ(t) := (y ∗ ψ)(t) =
∑
k

(αk − αk−1)ξ(t− tk), (8)

where ξ(t) = −
∫ t

−∞
ψ(τ) dτ , and αks are as defined in (3).

Proof. In view of (2), the convolution of y(t) with ψ(t) yields

yψ(t) = (x ∗ ψ)(t)− (z ∗ ψ)(t) = −(z ∗ ψ)(t), (9)

where the second equality follows from (7).
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Since z(t) has a representation given by (3), we have

−(z ∗ ψ)(t) = −

(∑
k

αk1[tk,tk+1] ∗ ψ

)
(t),

= −
∑
k

αk(ψ ∗ (utk − utk+1))(t),

= −
∑
k

(αk − αk−1)(ψ ∗ utk )(t),

=
∑
k

(αk − αk−1)ξ(t− tk),

and the result follows.

From Lemma 1 and (2), we see that reconstructing x(t) from
y(t) is achieved by computing the folding instants tks and the
weights αk − αk−1 from yψ(t) as given by (8). Since yψ(t) is
a sum of time-shifted and scaled versions of ξ(t), the αks can
be estimated, for instance, by using a matched filter with the
known kernel ξ(t). Since the support of ξ(t) is restricted to lie
in the interval [0, 2p− 1], exact reconstruction is possible whenever
(tk− tk−1) > 2p− 1, ∀k. This is satisfied for Lipschitz-continuous
functions if 2λ

L
> (2p − 1). This bound is sufficient, but is actu-

ally overly conservative. The above analysis can be extended to
smooth signals that can be approximated by polynomials by using a
truncated Taylor series expansion [23, Ch. 6].

3. DISCRETE DOMAIN

For digital implementation, we need to take into account that work-
ing with samples of x(t) and ψ(t) may not lead to the desired an-
nihilation property given by (7). If either ψ(t) or x(t) is not ban-
dlimited, then convolving and sampling operations do not commute.
Thus, while addressing problem (6), we need to understand the effect
of the sampling interval T . We employ the square bracket notation:
x[n] := x(nT ), and y[n] := y(nT ).

3.1. Polynomial Annihilation

To obtain the discrete counterpart of (7), we need to consider annihi-
lation of the sampled polynomial of degree p. Towards this end, we
need to construct a filter g(n) such that∑

n∈Z

nkg[n] = 0, for every k ∈ J0, pK. (10)

These conditions yield the Daubechies wavelet filter of order p [22,
23], with support J0, 2p−1K, which is the least among all wavelet fil-
ters that annihilate polynomials of degree p. Thus, (10) serves as the
discrete counterpart to (7) with the role of the wavelet ψ(t) replaced
by the filter g[n]. Analogous to the continuous-domain annihilation
(9), if x[n] := x(nT ) are the samples of a polynomial x(t) of degree
p, we have (y ∗ g)[n] = (x ∗ g)[n]− (z ∗ g)[n] = −(z ∗ g)[n],
where the second equality is a consequence of (10). The discrete
counterpart of Lemma 1 is provided next.

Lemma 2. Let x[n] be the samples of a polynomial of degree p, and
let g[n] be a discrete wavelet filter with p + 1 vanishing moments.

Then, we have, with m[n] := −
n∑

k=−∞

g[k], that

yg[n] := (y ∗ g)[n] =
∑
k

(αk − αk−1)m[n− nk]. (11)

Algorithm 1 : WAVElet-Based Unlimited Sampling (WAVE-BUS).

• Input: y(nT ) =Mλ{x(nT )}, L, λ, p, T

• Output: x̄(nT )

• Method:

1. Wavelet filtering: (yg)[n] = (y ∗ g)[n]

2. LASSO (13) (compute nks and αks):
arg min

h
‖Ah− yg‖2 + γ‖yg‖1

3. Compute z̄[n] :
∑
k αk1Jnk,nk+1K

4. Reconstruct x[n] : x̄[n] = y[n] + z̄[n]

The proof is straightforward and follows along the lines of
Lemma 1 with the role of ψ replaced by g. The reconstruction
of x[n] from y[n] now requires us to compute the discrete folding
instants nks and αks from (11), which is a sum of scaled and shifted
versions of m[n].

3.2. Computing the Discrete Folding Instants

Defining βk = αk − αk−1, we rewrite (11) as

yg[n] :=
∑
k

βkm[n− nk]. (12)

Expressing the above equation in matrix form gives yg = Ah,where
A is the convolutional dictionary of all integer-time shifted versions
of m[n] and h is a sparse vector whose support is precisely {nk}
with h(nk) = βk. The cardinality of {nk}, which is equal to the
number of times the signal x(t) folds back, is much less than the
length of the signal if the sampling rate is sufficiently high and x(t)
is sufficiently regular, as discussed below. It now remains to compute
nks and βk from the sparse representation. While several methods
exist for sparse reconstruction, we employ LASSO [24]:

min
h

= ‖yg −Ah‖2 + γ‖h‖1, (13)

where γ is the regularization parameter that enhances sparsity. Once
the parameters {nk, βk} are computed, we determine {αk} and con-
struct z[n] as dictated by (4), from which x[n] can be obtained.

The performance of LASSO depends on the values that nk take
and the support of m[n], which is equal to the support of g[n]. We
see that if min

k
(nk − nk−1) > supp{m[n]}, then no two shifted

versions of m[n] overlap thereby ensuring perfect reconstruction.
However, empirically it is seen that, even in case of an overlap of
about one-half to two-thirds of the support, LASSO reconstructs the
parameters with a high degree of accuracy. We next develop a sam-
pling scheme that ensures no overlap between successive shifts of
m[n] in (12). Define

Tf := min
k

(nk − nk−1)

to be the minimum folding interval. Since the length of the support
of the Daubechies wavelet filter is 2p, we see that a sampling interval

T ≤ Tf
2p

(14)

is sufficient to ensure that there is no overlap. While evaluating Tf
is not practical, we have the following lower bound on Tf whenever
the underlying signal x(t) is Lipschitz continuous.
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Fig. 3. WAVE-BUS with λ = 0.15: (a) Signal x(nT ), its modulo
samples y(nT ), and the reconstruction x̄(nT ); (b) wavelet filter out-
put yg(nT ), and the estimate z̄(nT ). The reconstruction error was
computed to be −330 dB.

Lemma 3. Let x(t) be a Lipschitz continuous signal that satisfies
|x(a)− x(b)| ≤ L|b− a| and y(t) = Mλ{x(t)}. Then, we have
T̃f := 2λ

L
≤ Tf .

Proof. From the defining property of Lipschitz continuity, we have

|x(t+ T̃f )− x(t)| ≤ LT̃f < 2λ, for all t,

and hence, starting at any tk, no folding happens in the interval
(tk, tk + T̃f ). Thus T̃f ≤ Tf .

From Lemma 3 and (14), the following condition

T ≤ 2λ

L(2p)
(15)

ensures that (14) is satisfied. This sampling interval is practically
realizable whenever the Lipschitz constant is known. The sampling
rate f is then given by f = 1

T
≥ Lp

λ
. The proposed technique to

reconstruct x(t) from y(t) is referred as WAVElet-Based Unlimited
Sampling (WAVE-BUS) and is presented in Algorithm 1.

4. SIMULATION RESULTS

We show simulation results of the proposed WAVE-BUS first in
the noiseless case and then consider the noisy scenario. Also, we
demonstrate improved reconstruction performance in the presence of
noise over the RFD method. We consider a signal, which is a linear
combination of two sinusoids of amplitude 0.7 and 0.5, and frequen-
cies 7 Hz and 4 Hz. The parameter λ is set to 0.15 and the sampling
interval as per the sufficiency condition stated in (15) is T < 0.43
ms. While the Nyquist rate provides the minimum sampling rate re-
quired to reconstruct a bandlimited signal from its samples, it ceases
to apply when we seek to reconstruct the signal from its modulo ver-
sion owing to the discontinuities. As the bound on T is conservative,
we choose T = 2 ms and Daubechies wavelet filter of order 4 to val-
idate the proposed reconstruction method in all our simulations and,
for a fair comparison, the sampling interval and other parameters are
chosen such that the sufficiency conditions of the RFD method are
met. The signal, its modulo samples, reconstructed signal (x̄[n]),
and the estimate z̄(nT ) are shown in Fig. 3.

Next, we consider the scenario wherein the modulo samples
{y[n]} are corrupted by noise as ỹ[n] = y[n] +w[n], where {w[n]}
is zero mean, additive, white Gaussian noise with variance σ2. The
input SNR is defined as SNRin = 10 log10

‖y[n]‖22
σ2 dB and the signal-
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Fig. 4. Unlimited sampling in the presence of noise (SNRin = 20 dB
and λ = 0.05): (a) The signal x(nT ) and its noisy modulo samples
ỹ(nT ). Reconstructions using (b) WAVE-BUS and (c) RFD meth-
ods with reconstruction errors at −80 dB and −7 dB, respectively.
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Fig. 5. SRNR for WAVE-BUS and RFD methods versus SNRin.

to-reconstruction noise ratio (SRNR) := 10 log10

∑
n |x[n]|2∑

n |x[n]− x̄[n]|2
dB is computed over L independent noise realizations. Figure 4
shows the reconstruction performance of WAVE-BUS and RFD
methods at SNRin = 20 dB. The SRNR for various SNRin for
L = 300 is shown in Fig. 5. We observe the robustness of the pro-
posed reconstruction method in the presence of noise as indicated
by the plots. The superior reconstruction of the WAVE-BUS method
is attributed to the fact that there is no accumulation of noise as in
the case of the RFD method.

5. CONCLUSIONS

We considered the problem of unlimited sampling and developed a
wavelet-based scheme to reconstruct from modulo measurements.
We provided sufficient conditions on the sampling interval for
perfect reconstruction of smooth signals in both continuous- and
discrete-time domains. The sufficiency conditions are given in terms
of the threshold of the ADC and Lipschitz constant of the smooth
signal. We demonstrated the performance of the reconstruction
method both in noiseless and noisy signal scenarios. One of the
merits of the proposed method is the superior noise robustness over
the repeated finite-difference method. Further, the proposed WAVE-
BUS method is applicable to smooth signals in general and not
restricted to bandlimited signals. For the discrete version, we re-
covered the folding instants by employing LASSO. In principle, any
sparse recovery technique could be employed and the sampling rate
could be further reduced, limited only by the ability of the technique
to super-resolve.
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