
BANDLIMITED SPATIOTEMPORAL FIELD SAMPLING WITH LOCATION AND TIME
UNAWARE MOBILE SENSORS

Sudeep Salgia and Animesh Kumar

Department of Electrical Engineering
Indian Institute of Technology Bombay, Mumbai, India - 400076

Email: sudeepsalgia4@gmail.com, animesh@ee.iitb.ac.in

ABSTRACT

Sampling of smooth spatiotemporally varying fields is a well-
studied topic in the literature. Classical approach assumes
that the field is observed at known sampling locations and
known timestamps ensuring field reconstruction. In a first,
in this work the sampling and reconstruction of a spatiotem-
poral bandlimited field is addressed, where the samples are
obtained by a location-unaware, time-unaware mobile sen-
sor. The spatial and temporal order of samples is assumed to
be known. It is assumed that the field samples are affected by
measurement-noise. The spatial field’s evolution is modeled
by a linear constant coefficient partial differential equation.
A regression style estimate is developed for reconstruction of
the spatial field. The intersample spacings and the intersam-
ple timestamp differences are assumed to be from indepen-
dent unknown renewal processes. If n is the average number
of samples of the field obtained by the mobile sensor, then it
is shown that the mean-squared error decreases as O(1/n).

Index Terms— nonuniform sampling, signal reconstruc-
tion, signal sampling, regression analysis

1. INTRODUCTION

Sampling of smooth spatiotemporally varying fields is a well-
studied topic in the literature [1, 2]. Classical approach as-
sumes that the field is observed at known sampling locations
and known timestamps ensuring field reconstruction [1, 2].
The field is assumed to evolve according a physical law, typ-
ically governed by a partial differential equation (PDE), such
as the diffusion equation [3]. To the best of our knowledge,
mobile sensing of spatial fields governed by a linear PDE with
constant coefficients has not been studied.

Recently, mobile sensing has been proposed for sampling
spatial fields [4, 5, 6]. For cost reduction, it is desirable to
work with a location and time unaware, inexpensive mobile
sensor. Accordingly, this work assumes that a mobile sensor
is available for sampling a spatial field of interest in a finite
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region, which is location-unaware and time-unaware. This re-
sults in a challenging field reconstruction problem: is it possi-
ble to sample and reconstruct a spatiotemporal field governed
by a PDE, where the samples are obtained by a location-
unaware, time-unaware mobile sensor? This works answers
the question in affirmative. Our results also hold when addi-
tive measurement-noise is present in the samples.

The field is assumed to be bandlimited. The spatiotem-
poral field’s evolution is given by a linear PDE with con-
stant coefficients. Bandlimitedness implies a finite number
of Fourier coefficients characterize the spatial field. The key
aspects utilized in solution include oversampling, denoising,
and utilization of spatial/temporal order of samples. The latter
is assumed to be known.

Our solution works by developing a regression style esti-
mate for the reconstruction of Fourier coefficients of the spa-
tiotemporal field at time t = 0. With PDE known, the coeffi-
cients at all times can be predicted from the initial Fourier se-
ries coefficients. The intersample spacings and the intersam-
ple timestamp differences are assumed to be from indepen-
dent unknown renewal processes. If n is the average number
of samples of the field obtained by the mobile sensor, then
our main result shows that the mean-squared error in the spa-
tiotemporal field estimation decreases as O(1/n). The sam-
pling setup is illustrated in Fig. 1.

For mathematical tractability, the spatiotemporal field is
assumed to be one dimensional in space evolving according
to a known PDE. The smoothness of the field is modeled by is
spatial bandlimitedness. The measurement noise is indepen-
dent of the intersample spacing and intersample timestamp
processes. It is also assumed to have zero mean and a finite
variance. Oversampling is the key technique used to denoise
and mitigate location-unawareness in this work.

Prior art: The literature consists of two parts: (i) pa-
pers which approach source reconstruction; and (ii) papers
which address this problem as a sampling/reconstruction
problem. Spatial sparsity of sources has been used to recon-
struct sources [7] using maximum likelihood estimators. Lu
and Vetterli have been sparsity aware super resolution tech-
niques to obtain sources [8]. A method of localizing sources
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Fig. 1. The mobile sampling scenario under study is il-
lustrated. A mobile sensor collects the spatial field’s sam-
ples affected by measurement noise at unknown locations
and unknown times denoted by (S1, T1), (S2, T2), . . . . The
goal is to estimate g(x, t) from the samples g(S1, T1) +
W1, . . . , g(Sm, Tm) +Wm.

has been proposed by Ranieri et al. [3]. Sampling with a
mobile sensor has been a topic of interest recently [4, 5, 6].
However, mobile sensing typically assumes sampling loca-
tions to be known. When spatial field is fixed with time,
sampling with a location-unaware mobile sensor or location-
unaware sensor network has been addressed recently [9, 10].
Location-unaware sampling has also been reported for sur-
face retrieval [11]. This work is novel since both the sampling
locations and the timestamps of the samples are unknown. It
is also assumed that the field is evolving while measurements
are being made by the mobile sensor.

Notation: The spatiotemporally varying field will be de-
noted as g(x, t) and its variants. Average sampling density
will be denoted by n. All vectors will be denoted in bold. The
expectation operator will be denoted by E[.]. The expectation
is over all the random variables within the arguments. The set
of natural numbers, integers, reals and complex numbers will
be denoted by N,Z,R and C respectively. Also, j =

√
−1.

2. FIELD, SAMPLING AND NOISE MODEL,
DISTORTION CRITERIA

2.1. Field Model

The spatial field is considered to be spatially smooth over a fi-
nite support, one dimensional in space, and its temporal evo-
lution is given by a PDE. The PDE is assumed to be linear
with constant coefficients, is known, and is given by

m∑
i=0

pi
∂i

∂ti
g(x, t) =

m′∑
i=0

qi
∂i

∂xi
g(x, t) (1)

where, ∂0

∂y0 f(y) = f(y). For notational convenience, let(
∂
∂z

)l
=
(
∂l

∂zl

)
. With p(z) =

∑m
i=0 piz

i and q(z) =

∑m′

i=0 qiz
i, the above PDE can be written as

p

(
∂

∂t

)
g(x, t) = q

(
∂

∂x

)
g(x, t). (2)

The smoothness of the field will be modeled by bandlim-
itedness for all t ≥ 0. Without loss of generality, the field’s
finite support is assumed to be [0, 1]. Its representation is,

g(x, t) =

b∑
k=−b

ak(t)e
j2πkx ; ak(t) =

∫ ∞
−∞

g(x, t)e−j2πkxdx.

(3)
The field is assumed to be bounded, i.e., |g(x, t)| ≤ 1.

2.2. Distortion criteria

The distortion will be measured by the mean-squared error
between the field and its estimate at t = 0. Let the field
estimate be Ĝ(x, t) and its non-zero Fourier coefficients be
Âk(t), |k| ≤ b, then the distortion is defined as

D
[
Ĝ, g

]
:= E

[ ∫ 1

0

|Ĝ(x, t)− g(x, t)|2
]∣∣∣∣
t=0

=

b∑
k=−b

E
[∣∣∣Âk(0)− ak(0)∣∣∣2] (4)

2.3. Sampling model

It is assumed that there is a mobile sensor which moves from
x = 0 to x = 1 while recording samples of the field g(x, t).
As the sensor moves, the field also evolves. This is the key
distinction from models used in the literature. Field sam-
ples are collected on points generated by an unknown renewal
process [9]. Let X1, X2, . . . be the intersample distances
and N1, N2, . . . be the corresponding intersample time in-
tervals. These variables are assumed to be the realizations
of two independent, possibly different, and unknown renewal
processes. Let the intersample distributions for X and N be
f(x) and g(x), respectively. The sampling locations Sn are
given by Sn =

∑n
i=1Xi. The sampling is done over [0, 1],

and M is the random number of samples that lie in this inter-
val. Note that the stopping condition SM ≤ 1 and SM+1 > 1
results in M ; and, it means M is a well defined random vari-
able [12].

For analytical tractability, the support of the distributions
of X and N are considered to be finite and inversely propor-
tional to the sampling density. That is,

0 < X ≤ λ

n
, 0 < N ≤ µ

n
and E[X] = E[N ] =

1

n
(5)

where 1 < λ, µ � n are fixed parameters that characterize
the support of f(x) and g(x). Applying Wald’s identity [12],
on SM+1 and using equation (5), we can write

E[M ] = nE[SM+1]− 1 (6)
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By definition, SM+1 > 1 and SM ≤ 1. Since SM+1 =
SM +XM+1, therefore, SM+1 ≤ 1 +XM+1 ≤ 1 + λ

n . Use
these inequalities with equation (6), to obtain,

n− 1 < E[M ] ≤ n+ λ− 1 (7)

Since Xi ≤ λ
n and SM+1 > 1, so

(M + 1)
λ

n
> 1 or M >

n

λ
− 1 (8)

The results in (6) and (8) imply that M scales linearly with n.
It is assumed that the sensing begins at t = 0. The times-

tamps are assumed to be Tn =
∑n
i=1Ni. Let Tf be the

timestamp at the end of the sensing experiment, i.e., when
the sensor reaches x = 1. The timestamp Tf is assumed to be
known. Note that TM ≤ Tf and TM+1 > Tf will be satis-
fied since M samples are obtained by the mobile sensor. The
value of Tf may vary but is known at the end of the sensing.

2.4. Measurement noise model

It will be assumed that the obtained samples have been cor-
rupted by measurement-noiseW (x, t). The noise samples for
different pairs (x, t) will be independent, zero mean, finite
variance, and identically distributed. The noise distribution is
not required for mean-squared calculations done in this work.

3. FIELD ESTIMATION FROM SAMPLES

This section will highlight the estimation of the field from
samples whose locations and timestamps come from two un-
known independent renewal processes. A brief discussion of
the field under its PDE is presented first. Since Fourier series
is linear in coefficients, from (3) and (1), and linear indepen-
dence of Fourier basis it follows that

m∑
i=0

pi
∂iak(t)

∂ti
− q(j2πk)ak(t) = 0, k = −b, . . . , b. (9)

Each ak(t) evolves by an ordinary differential equation
(ODE) with constant coefficients. The solution of ODE
with constant coefficients is well known (via the Laplace
transform [13]). For each k, let ri(k) be the m roots of
p(r)− q(j2πk) = 0. Then, the Fourier coefficients in (9) are

ak(t) =

m∑
i=1

aki(0) exp(ri(k)t), (10)

where aki(0) govern the initial conditions of the field before
PDE based evolution begins. For a physically feasible field,
<[ri(k)] ≤ 0 for all i ≤ m, |k| ≤ b, that is all roots have
a non positive real part. This criteria can be checked us-
ing Routh Hurwitz algorithm [14]. While repeated roots are
tractable, for notational simplicity, it is assumed that all the
roots r1(k), . . . , rm(k) that determine ak(t) are distinct.

From (10) and (3) the field samples at (Sn, Tn) are

g(Sn, Tn) =

b∑
k=−b

m∑
i=1

aki(0) exp(ri(k)Tn+j2πkSn). (11)

Let ek,i(x, t) = exp(ri(k)t+ j2πkx). Define

ek(x, t) := [ek,1(x, t), . . . , ek,m(x, t)]

ak = [ak1(0), ak2(0), ak3(0), . . . , akm(0)]

a = [a−b, . . .a−1,a0,a1, . . .ab]
T

e(x, t) = [e−b(x, t), . . . , eb(x, t)]
H . (12)

Observe that a and e(x, t) are column vectors, while ek(x, t)
and ak are row vectors. Since <[ri(k)] ≤ 0, so |ek,i(x, t)| ≤
1. This results in ‖ek(x, t)‖22 ≤ m and ‖e(x, t)‖22 ≤ m(2b+
1). With notation from (12), (11) can be rewritten as

g(Sn, Tn) = eH(Sn, Tn) a. (13)

Due to measurement-noise, the observed field values will be
g(Si, Ti) +W (Si, Ti), 1 ≤ i ≤M . Define two vectors

g = [g1, g2, . . . , gM ]T and w = [w1, w2, . . . , wM ]T (14)
where, gi = g(Si, Ti), wi =W (Si, Ti) for 1 ≤ i ≤M.

Let gs be the measurement-noise affected samples obtained
at (S1, T1), . . . , (SM , TM ). Then, gs = g + w. Combining
equation (13) and (14), we get

g = Y a ; where Y = [e(S1, T1) . . . e(SM , TM )]H (15)

Our estimation method follows next. The locations
S1, . . . , SM and timestamps T1, . . . , TM are unknown, so
equi-spaced approximations for them are defined as follows:

si =
i

M
and ti =

iTf
M

for 1 ≤ i ≤M. (16)

Corresponding to (s1, t1), . . . , (sM , tM ) define

g0 = [gu,1, . . . gu,M ]T ;Y0 = [e(s1, t1)...e(sM , tM )]H

where gu,i = g(si, ti), i = 1, 2, . . . ,M. (17)

The main idea behind the reconstruction is that the sample
locations and timestamps are “near” to equispaced sampling
setup [9] due to renewal process structure on intersample
spacings/timestamps. This motivates to define Y0 as above
and estimate the Fourier coefficients by assuming that sam-
ples have been obtained by multiplying the Fourier coefficient
vector by Y0 instead of the (unknown matrix) Y . The best
least-squared estimate of the Fourier coefficients, â, would be

â = argmin
b

= ‖gs − Y0b‖22 (18)
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For sampling density exceeding the number of Fourier coef-
ficients n > m(2b + 1), this can be solved as a linear least
squares estimation (regression). The solutions are [15]

â = (Y H0 Y0)
−1Y H0 gs

a = (Y H0 Y0)
−1Y H0 g0 (19)

where the second equation gives the exact Fourier coefficients
of the field. The distortion in (4) is upper-bounded by

D[Ĝ, g] =
b∑

k=−b

E
[
|
m∑
i=1

(
Âki(0)− aki(0)

)
|2
]

(20)

≤
b∑

k=−b

E
[
m

m∑
i=1

∣∣Âki(0)− aki(0)∣∣2] (21)

=≤ m(2b+ 1)E
[
‖â− a‖22

]
(22)

We now state our main result in the following theorem.

Theorem 3.1. Let â and a be defined in equation (19). Then

E
[
‖â− a‖22

]
≤ C ′

n

where n is the average sampling density and C ′ is a posi-
tive constant independent of n. The constant C ′ depends on
the bandwidth b, the renewal processes parameters λ and µ,
the PDE coefficients, and noise variance σ2. The field recon-
struction distortion can be bounded as m(2b+1)C′

n .

Proof. For details see [16]. The proof utilizes the properties
of the matrix Y0. Let A = (Y H0 Y0)

−1Y H0 . Then

E
[
‖â− a‖22

]
≤ 2E

[
λAmax‖g − g0‖22

]
+ 2E

[
‖Aw‖22

]
(23)

where Cauchy-Scwharz inequality is used and λAmax is the
largest eigenvalue of AHA. Now, it can be shown that

λAmax ≤ tr((Y H0 Y0)
−1) (24)

where tr(AHA) means the trace of the AHA. Since noise
is zero mean, independent, and finite variance, so the second
term in (23) satisfies

E
[
‖Aw‖22

]
≤ σ2E

[
tr((Y H0 Y0)

−1)
]

(25)

From [16], tr((Y H0 Y0)
−1) ≤ (Ct/M) for some constant Ct.

So

E
[
tr((Y H0 Y0)

−1)
]
≤ CtE

[
1

M

]
≤ Ctλ

n− λ
. (26)

from (8). In [16], it has been proved that

E
[
1

M
||g − g0||2

]
≤ CS + CT

n
(27)

for some constants, Cs and CT , independent of n. The in-
equalities in (25), (26), and (27) in (23) shows the result.

Fig. 2. The plots show that the distortion scales as O(1/n)
(see Theorem 3.1) for the three PDEs in Section 4.

4. SIMULATIONS

A sample field gs(x, 0) with b = 3 was generated. Its
ak(0) Fourier coefficients for k ≥ 0 were generated us-
ing independent Uniform[−1, 1] random variables for the
real and imaginary parts. Conjugate symmetry was used to
obtain ak(0) for negative k. The field was finally scaled
to have |g(x)| ≤ 1. The following PDEs with initial
condition gs(x, 0) were used for simulations: (i) p1(z) =
z2 + 3z, q1(z) = 0.01(z2 − 0.0125z4); (ii) p2(z) = z2 + 3z,
q2(z) = 0.01z2; and, (iii) p3(z) = z, q3(z) = 0.01z2

(diffusion equation). The intersample distances were gen-
erated from Uniform[ 0.2n ,

1.8
n ] distribution, while the times-

tamps were generated from Uniform[ 0.6n ,
1.4
n ]. Measurement

noise was assumed to be independent Gaussian with variance
σ2 = 0.125. The mean-squared error for our estimates are
illustrated in Fig. 2 for above three PDEs. The mean-squared
error has slope of −1 in log-log plot confirming O(1/n) de-
cay. To benchmark our regression, distortion is compared
when regression is performed with field samples equi-spaced
in location and time. Surprisingly, there is feeble difference
between the benchmark and the location-unaware regression.

5. CONCLUSIONS

The sampling of spatially bandlimited field evolving accord-
ing to the constant coefficient linear PDE using a mobile sen-
sor was studied. The field was estimated using the noisy sam-
ples obtained at unknown locations and time instants obtained
from two independent and unknown renewal processes and
it was shown that the mean squared error between the esti-
mated field and the true field decreased as O(1/n), where n
was the average sampling density. The main idea that was
leveraged was the fact that the sample locations approach the
equi-spaced uniform sample locations as the sampling density
increases, and oversampling reduced the error.
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