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ABSTRACT

In a recent paper [1], we introduced the concept of “Unlimited
Sampling”. This unique approach circumvents the clipping or satura-
tion problem in conventional analog-to-digital converters (ADCs) by
considering a radically different ADC architecture which resets the in-
put voltage before saturation. Such ADCs, also known as Self-Reset
ADCs (SR-ADCs), allow for sensing modulo samples. In analogy to
Shannon’s sampling theorem, the unlimited sampling theorem proves
that a bandlimited signal can be recovered from modulo samples pro-
vided that a certain sampling density criterion, that is independent of
the ADC threshold, is satisfied. In this way, our result allows for perfect
recovery of a bandlimited function whose amplitude exceeds the ADC
threshold by orders of magnitude. By capitalizing on this result, in this
paper, we consider the inverse problem of recovering a sparse signal
from its low-pass filtered version. This problem frequently arises in sev-
eral areas of science and engineering and in context of signal processing,
it is studied in several flavors, namely, sparse or FRI sampling, super-
resolution and sparse deconvolution. By considering the SR-ADC ar-
chitecture, we develop a sampling theory for modulo sampling of low-
pass filtered spikes. Our main result consists of a new sparse sampling
theorem and an algorithm which stably recovers aK–sparse signal from
low-pass, modulo samples. We validate our results using numerical ex-
periments.

Index Terms— Approximation, finite rate of innovation (FRI),
sparse reconstruction, non-linear sampling, modulo mapping.

1. INTRODUCTION

1.1. Sampling and Recovery of Sparse Signals in Theory

Recovering spikes from low-pass filtered measurements is a problem that
finds applications in several fields of science and engineering. Con-
cretely speaking, consider the model:

g (t) =
∑K−1

k=0
ckψ (t− tk) ≡ (sK ∗ ψ) (t) (1)

where ψ is a bandlimited function and sK is a continuous time, K–
sparse, τ -periodic signal,

sK (t) =
∑

m∈Z

∑K−1

k=0
ckδ (t− tk −mτ), tk+1 > tk. (2)

With ψ known and given sampled measurements yn = y (nT ) , n =
0, . . . , N − 1, where T > 0 is the sampling rate, one is typically
interested in recovering sK (t) from discrete set of N measurements
{gn}N−1

n=0 . In the recent years, this problem has been widely studied
under the theme of (a) sparse deconvolution [2], (b) sparse or FRI
sampling [3, 4] and (c) super-resolution [5]. While this problem has a

Higher Order Reflections

(b)

(a)

Fig. 1: Two practical scenarios for amplitude limited sampling. (a) Ultra-wide
band signal undergoes saturation. (b) Data from ultrasonic sensor reveals that the
dominant reflection is clipped or saturated as it exceeds the maximum recordable
voltage of the ADC. In this case, exact calibration of ψ is not possible.

known history with roots tracing back to seismic imaging [6, 7], re-
cent developments allow for recovery of sparse signals with support
{tk}K−1

k=0 ∈ [0, τ) at arbitrary points on the real line rather than re-
stricted to a predescribed grid. Hence this leads to so-called “off-the-
grid” recovery approaches [8].

The sparse signal recovery problem is closely tied to the topic of
Shannon’s sampling theory [9]. In analogy to the sampling of bandlim-
ited signals where by the signal is pre-filtered with an anti-aliasing or
low-pass filter, the measurements gn can be written as,

gn =

∫
sK (t)ψ (t− nT ) dt︸ ︷︷ ︸

Projection

≡ (sK ∗ ψ) (t)|t=nT︸ ︷︷ ︸
Pre-filtering and Sampling

, (3)

which is equivalent to low-pass projections of sK onto subspace of ban-
dlimited function VBL = span

{
ψ (t− nT )

}N−1

n=0
and where ψ (t) =

ψ (−t). A natural question then is: When is the mapping between the
sparse signal sK (t) and samples {gn}N−1

n=0 , one-to-one? It was shown
by Li and Speed (cf. Thm 3.2, [2]) and Vetterli, Blu and co-workers
(cf. Thm 1, [3], [4]) that N ≥ 2K + 1 gurantees exact recovery of
sK (t) from gn provided that the support or the locations tk ∈ [0, τ)
are distinct. The recovery procedure [3] then relies on Fourier domain
extrapolation which is outlined in Algorithm 1.

The ability to sample and reconstruct sparse signals has found many
applications including radio-astronomy [10], channel estimation [11],
optical tomography [12], ultrasound imaging [13] and more recently,
time-of-flight imaging [14, 15]. In view of (1), typically, bandlim-
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Algorithm 1: Sparse Sampling and Reconstruction [3, 4]

Data: K, {gn}N−1
n=0 , N ≥ 2K + 1 and kernel ψn = ψ (nT ).

Result: Estimate of sK in form of
{
c̃k, t̃k

}K−1

k=0
.

1) Compute the (discrete) Fourier transform of gn and ψ (nT ), that is,
ĝm = ĝ (mω0) and ψ̂m = ψ̂ (mω0), respectively where ω0 = 2π/τ .

2) Deconvolve to obtain ŝm = ĝm/ψ̂m, |m| ⩽M where M ≥ K is the
bandwidth of ψ.

3) Use spectral estimation to estimate {ck, tk}K−1
k=0 from data ŝm.
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Fig. 2: Transfer function of conventional ADC compared with self-reset ADC.
For conventional ADCs, whenever |fIn| > λ, ADC saturates to λ and this
results in clipping. In contrast, whenever |fIn| > λ, the self-reset ADC folds
fIn such that fOut is always in the range [−λ, λ]. In this way, the self-reset
configuration circumvents clipping but introduces discontinuities.

itedness is defined in the Fourier domain; however, there are advan-
tages of considering other unitary transforms. To this end, the recov-
ery procedure has also been studied for the case of spherical harmon-
ics [16,17], the Gabor transform [18] and generalizations of the Fourier
transform [19,20].

1.2. Sampling and Recovery of Sparse Signals in Practice

In recovering sparse signals from low-pass projections, one fundamen-
tal assumption that is made in theory is that the dynamic range of the
sensor or the analog to digital converter (ADC) is infinite. To the best
of our knowledge, such assumptions appear in all previous works on the
problem [2, 3, 5, 10–15].

In practice, however, ADCs are finite dynamic range devices and
whenever a signal crosses the threshold (or the maximum recordable
voltage), the measurements are saturated or clipped. Clipping of a ban-
dlimited signal results in discontinuities which manifest as aliasing due
to high frequency distortion in the Fourier domain [21]. In view of
this, a number of numerical methods have been proposed in the litera-
ture [22–25], however, the exact link to sampling theory of bandlimited
or sparse signals remains largely unclear.

This problem is of specific practical relevance in the context of cal-
ibration, namely, the knowledge of the unknown kernel ψ is critical
for accurate recovery of sK in sparse sampling models such as (1). In
almost all of the applications, the kernel ψ is obtained in a calibration
phase [15].

During this phase, the received amplitudes are typically larger than
during the following sensing phase, as shown via experimental mea-
surements in context of ultra-wide band sensing in Fig. 1(a) and ultra-
sonic non-destructive testing in Fig. 1(b). Consequently, either satura-
tion limits the exact calibration of ψ and the sparse sampling model
(1) is invalid, or one has to work with a very high dynamic range,
which will impact the measurement resolution as well as the penetra-
tion depth of ψ (cf. [15,26,27]. In view of model (1), some application
areas where this problem frequently arises includes ground penetrating
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Fig. 3: Unlimited sampling of sparse signals with K = 2. We plot low-pass
filtered data g, the folded function Mλ (g) as well as modulo samples yn in (5).
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Fig. 4: ADC architecture for Unlimited Sampling.

radar [26] (cf. pg. 149, Fig. 5.2), seismic imaging [27], ultra-wideband
sensing [28] and ultrasound imaging [29]. Not surprisingly, most of
these solutions rely on:
1) ADC level corrections [28, 29], or,
2) De-clipping followed by deconvolution [27, 30].
It is clear from literature that existing approaches decouple acquisition
(hardware) from recovery algorithm (software). The downside being,
hardware-only approaches [28,29] are limited by computation that can
be handled by hardware and algorithm-only approaches solve a sequen-
tial problem of de-clipping followed by spike recovery. For the lat-
ter, the quality of reconstruction depends on the effectivity of the de-
clipping algorithm and is less attractive in practice because the ψ may
still be unknown.

1.3. Our Contribution

Our work is based on the recently introduced theory of “Unlimited
Sampling” [1] which exploits a co-design between acquisition and re-
covery algorithm. On the acquisition front, we use self-reset ADCs
(SR-ADCs) [31, 32] which are based on a radically different approach
than the conventional ADCs in that whenever the input signal crosses
a preset voltage threshold λ, the recorded voltage is reset (cf. Fig. 2). In
this way, SR-ADCs allow for capturing voltages far beyond the satura-
tion limit. The SR-ADCs rely on a folding architecture which is based
on a memoryless, non-linear mapping [1],

Mλ : t 7→ 2λ

([[
t

2λ
+

1

2

]]
− 1

2

)
, (4)

where [[t]]
def
= t − ⌊t⌋ defines the fractional part of t. The mapping

in (4) ensures that amplitudes are folded in the range of Mλ, that is,
[−λ, λ]. By using SR-ADCs, we circumvent the problem of ADC level
corrections [28, 29] or clipping. However, it remains to recover sK
from the SR-ADC based samples.

Consequently, the contributions of this paper are two fold:

1) We take a first step towards formalization of a sampling theorem
for sparse signals which leads to a sufficient condition for prefect
recovery of K–sparse signals from SR-ADC samples.

2) Our sampling theorem is complemented by a constructive algo-
rithm which describes a linear and stable recovery procedure.
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2. UNLIMITED SAMPLING OF BANDLIMITED SIGNALS

Here, we briefly review the basic principles at the core of unlimited sam-
pling theory introduced in [1]. In view of the SR-ADC architecture
discussed in [31,32], we will use the setup in Fig. 4 for obtaining mod-
ulo samples. Here, a finite energy signal (not-necessarily bandlimited) is
pre-filtered with a bandlimited kernelψ. Let ψ̂ (ω) =

∫
ψ (t) e−ȷωtdt

define the Fourier Transform of ψ. We say ψ is Ω–bandlimited or,

ψ ∈ BΩ ⇔ ψ̂ (ω) = 1[−Ω,Ω] (ω) ψ̂ (ω) and ψ ∈ L2

where 1X (t) is the indicator function on set X . Here, the pre-filtering
operation, that is y = f ∗ψ, ensures that y ∈ BΩ. Due to the SR-ADC
architecture, the filtered signal g undergoes amplitude folding defined
by (4) and results in z = Mλ (g). The non-linearly folded signal z is
then sampled via impulse modulation and results in modulo samples,

yn
def
= z (nT ) = Mλ (g (nT )) , n ∈ Z (5)

where T > 0 is the sampling rate. The question of recovering g (t) ∈
Bπ from modulo samples yn, n ∈ Z is discussed in our companion
paper [1] and the main result takes form of the following theorem:

Theorem 1 (Unlimited Sampling Theorem [1]). Let g (t) ∈ Bπ and
yn = Mλ (g (t))|t=nT , n ∈ Z in (5) be the modulo samples of g (t)
with sampling rate T . Then, a sufficient condition for recovery of g (t) from
the {yn}n up to additive multiples of 2λ is,

0 < Tπe ≤ 1/2. (6)

The fundamental difference between recovery of sparse signal in
(2) with respect to the bandlimited case discussed in [1] is that we will
working with finite number of samples. Of course we expect that N
will be larger than 2K + 1 but the number of samples should still be
finite. Consequently, in working with sparse signals, there is a trade-off
between sampling rate T and number of modulo samplesN . While T
dictates the recovery conditions for unfolding gn,N defines the critical
number of samples required for estimation of sK from gn.

3. UNLIMITED SAMPLING OF SPARSE SIGNALS

Let ψ ∈ Bπ be a given low-pass filter and sK be defined in (2). Fur-
thermore, let {yn}N−1

n=0 in (5) be themodulo samples of g defined in (1).
The purpose of this section is to study the perfect reconstruction con-
dition which gurantees recovery of continuous-time sparse signal sK
from modulo samples yn.

Our basic strategy for recovering sK from yn can be summarized
as,

yn
Unfolding−−−−−→ gn

Sparse Recovery−−−−−−−−→ sK (t) .

This approach relies on extracting unfolded, contiguous sample se-
quence gn of size 2K + 1 from which sK (t) is estimated using
high-resolution frequency estimation [2–4]. To see this, we split the
problem into two parts which are discussed subsequently.

3.1. Localized Reconstruction from Unlimited Sampling

Given g ∈ Bπ and yn, n ∈ Z in (5), the problem of recovering
gn, n ∈ Z was discussed in [1]. In this work, in contrast to [1], it
suffices to recover a subset of gn with sizeN = 2K+1 rather than the
full sequence, but we only have finitely many modulo samples at our
disposal. This fundamentally different setup requires a new approach
which we will develop in this paper. The first step towards that goal is
the same as in [1]. Namely the following lemma, which summarizes

Lemma 1 and Proposition 2 of [1], shows that higher order differences
∆L, i.e., repeated applications of the first-order difference defined by
(∆v)n = vn+1 − vn, of the modulo samples yn allow for the recon-
struction of the higher order differences of the original signal¹.

Lemma 1. For g ∈ Bπ , set gn = g (nT ) , T ∈ R+ and assume
that some bound βg ≥ ∥g∥∞ is available. Furthermore, assume that
Tπe ≤ 1

2
and choose

L =
⌈

log λ−log βg

log(Tπe)

⌉
.

Then the sequence yn = Mλ (gn) of modulo samples satisfies

∆Lgn = Mλ

(
∆Lgn

)
= Mλ

(
∆Lyn

)
. (7)

Consequently, finding an L-th order finite differences of the se-
quence gn just requires the corresponding L-th order finite differences
of the sequence yn of modulo samples, which in turn can be constructed
from L+ 1 subsequent samples of yn. Due to the overlap in the sam-
ples used, finding some number R of subsequent L-th order finite dif-
ferences of the sequence gn requires L+R subsequent samples of yn.

It remains to reconstruct the sequence gn from its L-th order finite
differences. As in [1], we invert each of the repeated finite difference
operators sequentially, and the difficulty is that in each step, the inverse
is only defined up to an additive constant. Given that the modulo sam-
ples are available, this ambiguity consists of even integer multiples of λ,
and the right constants can be derived from boundedness properties of
bandlimited functions (cf. [1]).

More precisely, note that g ∈ Bπ can be uniquely decomposed
as g = Mλ (g) + εg where εg is a simple function, εg (t) =
2λ

∑
ℓ∈Z eℓ1Dℓ (t), eℓ ∈ Z. With yn = Mλ (g (nT )) given,

knowing εg is equivalent to the knowledge of gn. Due to highly
structured form of εg , there is a strong restriction on the range of
the same. Namely, we may enforce the amplitude restriction that
∆ℓ−1εg ∈ 2λZ when applying the anti-difference operation defined
by, S : (ai)

∞
i=1 7→ (

∑i
i′=1 ai′)

∞
i=1. We obtain that

(∆ℓ−1εg)n = (S∆ℓεg)n + κ(ℓ)an, an = 2λ . κ(ℓ) ∈ Z. (8)

Since constants are in the kernel of ∆, this cannot be resolved any
further for ℓ = 1, we can only estimate εg up to multiple of 2λZ.
For ℓ > 1, however, we can apply S again and estimate the unknown
κ(ℓ), ℓ = 1, . . . , L. We obtain

(∆ℓ−2εg)n = (S2∆ℓεg)n + κ(ℓ) (Sa)n + κ(ℓ−1)an. (9)

and, given that (Sa)n is growing linearly, all but one choice of κ(ℓ) will
yield a sequence that violates the supremum bound entailed by the prior
knowledge of βg . As shown in [1], a sufficient number of subsequent
samples of∆ℓy to distinguish the feasible choice of κ(ℓ) from the infea-
sible ones is 6βg

λ
, and hence the required number of subsequent samples

of g is bounded by 6βg

λ
+ L+ 1 ≤ 7

βg

λ
+ 1 to reconstruct one value

of g and 7
βg

λ
+N ′ to reconstructN ′ subsequent values (cf. discussion

after Lemma 1).

Theorem 2 (Local Reconstruction Theorem). Let g (t) ∈ Bπ with
∥g∥∞ ≤ βg and yn = Mλ (g (t))|t=nT , n = 0, . . . , N − 1 in

¹A similar observation has been made in the phase-unwrapping literature
where the well known Itoh’s condition [33] requires ||∆y||∞ < λ. However,
this approach is highly restrictive for it works only with L = 1 and by inverting
the discrete difference without exploiting any signal structure.
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(5) be the modulo samples of y (t) with sampling rate T . Then a sufficient
condition for recovery of N ′ contiguous samples of g from the yn (up to
additive multiples of 2λ) is that

T ≤ 1
2πe

and N ≥ N ′ + 7
βg

λ
. (10)

3.2. A Sufficiency Condition for Recovering Sparse Signals

To apply this theorem to the case of sparse sampling, recall that the
number of subsequent samples required for reconstruction is 2K + 1,
which should hence also be our choice for N ′. Also note that using
Young’s inequality, one can bound

∥g∥∞ = ∥sK ∗ ψ∥∞ ≤ ∥ψ∥∞∥sK∥TV, (11)

where the ∥ · ∥TV denotes the total variation of a measure, which, for
spike trains, corresponds to the ℓ1-norm of the coefficient sequence ck
in (2). Thus we obtain the following main result.

Theorem 3 (Unlimited sampling of sparse signals). Let g = sK ∗ψ for
a known low-pass filter ψ ∈ Bπ and sK in (2) be the unknownK-sparse
signal to be recovered, and assume one has access to an a priori bound βg ≥
∥ψ∥∞∥sK∥TV. Let yn = Mλ (g (t))|t=nT , n = 0, . . . , N − 1 in
(5) be the modulo samples of y (t) with sampling rate T . Then a sufficient
condition for recovery of sK from the yn (up to additive multiples of 2λ)
is that

T ≤ 1

2πe
and N ≥ 2K + 1 + 7

βg

λ
. (12)

Provided that this sufficiency condition is satisfied, and assuming
that βg is known, by choosing L prescribed by Lemma 1, Algorithm 2
recovers the sparse signal sK (t) from modulo samples {yn}N−1

n=0 .
In contrast to [1] where the sampling bound is independent of

SR-ADC threshold λ, in case of sparse sampling note that N ∝ λ−1.
Since we are dealing with finite number of samples, this result is intu-
itive and we do expect that the number of samples required for sparse
recovery will depend on both the sparsity level K and the dynamic
range βg/λ of the signal g = sK ∗ ψ.

3.3. Numerical Demonstration

We set up a numerical example where we setK = 3 and τ = 10 to de-
fine sK (t) using {ck, tk} chosen arbitrarily. This immediately gives,
βg = 3.2511. We then acquire low-pass filtered measurements using
ψ (t) = sinc (t) which is clearly π–bandlimited or ψ ∈ Bπ . With
λ = 1/4 and modulo sampling rate T = 1/ (2πe) − 1/100, we ac-
quire modulo samples yn using (5). By using result of Lemma 1, we
obtain L = 3. Furthermore, in view of (12), we must have at least
N = 99 modulo samples for recovery of 2K + 1 contiguous values of
unfolded gn. We plot the sparse signal, its low-pass filtered version and
the resultant modulo samples in Fig. 5 (a). By using the localized recov-
ery method developed in Algorithm 2, we estimate unfolded samples
g̃n which is exactly the same as gn (upto machine precision) and this is
shown in in Fig. 5 (b). In this computation, we assume the knowledge
of constant offset since g̃n may only be estimated upto a constant ambi-
guity of 2λZ. The mean squared error between ground truth gn and its
estimate g̃n is noted to be 5.0401e−34. By choosing any contiguous set
of size 2K + 1 of theN = 99 samples of g̃n, we can use the approach
developed in [3] to estimate sK .

4. CONCLUSION

In this paper, we considered the problem of recovery of sparse signals
from low-pass filtered measurements which are sampled using self-reset

Algorithm 2: Sparse Recovery from Modulo Folded Samples

Data: Sparsity level K, L ∈ N, modulo samples {yn}N−1
n=0 in

(5), the low-pass filter ψn and βg ≥ ∥ψ∥∞∥sK∥TV.
Result: Estimate of sK in form of

{
c̃k, t̃k

}K−1

k=0
.

1) Compute y = (∆Ly)n.
2) Compute εg = Mλ(y)− y. Set s(1) = εg .
3) for ℓ = 1 : L− 1 and J = 6βg/λ,

Compute κ(ℓ) =

⌊
νℓ
1−νℓ

J+1

8βg
+ 1

2

⌋
with νℓn =

(
S2∆ℓεg

)
n
.

s(ℓ+1) = Ss(ℓ) − 2λκ(ℓ).
end

4) g̃n = Ss(L), n = 0, . . . , N − 1 and N ≥ 2K + 1.
5) Use g̃n and ψn in Algorithm 1 to estimate

{
c̃k, t̃k

}K−1

k=0
.

� = 10� = 10� = 10

+�+�+�
������

+�+�+�
������

ynynyn

sK (t)sK (t)sK (t)
g (t)g (t)g (t)
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Fig. 5: Sparse signal recovery via local reconstruction of modulo samples with
βg = 3.2511 and λ = 0.25. (a) We plotK–sparse signal sK (t) withK = 3
and τ = 10, the low-pass filtered signal g = sK ∗ψ where ψ (t) = sinc (t) as
well as modulo samples yn = Mλ (gn)withT = 0.0485. Note thatψ ∈ Bπ .
(b) Using Algorithm 2, we estimate unfolded samples g̃n fromN = 99modulo
samples of yn. For this purpose L = 3. The reconstruction is observed to be
exact (upto machine precision). Given 2K + 1 of g̃n, the spikes are estimated
using Algorithm 1.

or folding ADCs [1, 31, 32]. This novel ADC architecture maps low-
pass filtered samples into modulo samples and hence circumvents any
clipping or saturation. Since modulo operation is a non-linear map-
ping, in this paper we developed a strategy for local reconstruction of
bandlimited signals from modulo samples. This result allows us to com-
bine previously known methods for sparse signal recovery that were in-
troduced in [3]. Our key result describes a perfect recovery condition
for estimating aK–sparse signal from a finite number of modulo mea-
surements. We provide a sampling bound for both the sampling rate
as well as the number of samples needed for estimation of a K–sparse
signal. Our work raises some interesting questions for future. For exam-
ple, we note that the number of modulo samples depends on sparsity
(K) and the dynamic range of the signal (βg/λ). Through numeri-
cal experiments we empirically observed that our bound can be further
sharpened. Furthermore, spike trains are a particular class of paramet-
ric signals. In future, we hope to develop results for a wider class of
parametric signals.
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