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ABSTRACT
Approximating the transfer function of stable causal linear systems
by a basis expansion is a common task in signal- and system theory.
This paper characterizes a scale of signal spaces, containing stable
causal transfer functions, with a very simple basis (the Fourier basis)
but which is not computable. Thus it is not possible to determine the
coefficients of this basis expansion on any digital computer such that
the approximation converges to the desired function.

Since the Fourier basis is not computable, the second part of
the paper investigates whether there exist better bases. To this end,
the notion of a computational basis is introduced and it is shown
that there exists no computational basis in these spaces. The paper
characterizes also subspaces on which computational bases do exist.

Index Terms— Basis expansion, causality, computability, sam-
pling, stability

1. BASIC CONCEPTS AND PROBLEM FORMULATION

The approximation of linear time-invariant (LTI) systems by simpler
systems plays a fundamental role in system- and signal theory [1–3].
The goal is always to represent a general LTI system by a system
which has a fairly simple structure such that it can easily be ana-
lyzed, synthesized, and implemented. In doing so, basis representa-
tions of transfer functions are of central importance [4–6]. Before
giving a more detailed problem formulation, we shortly introduce
basic notations.

A causal LTI systems is an operator S mapping input sequences
x = {x[n]}n∈Z ∈ `

2 onto output sequences y = {y[n]}n∈Z ∈ `
2

according to

y[n] =
(
Sx
)
[n] =

∑∞
k=0 f [k]x[n− k] , n ∈ Z . (1)

Therein {f [k]}∞k=0 is said to be the impulse response of S, and `2

stand for the usual signal space of sequences x over Z of finite en-
ergy ‖x‖22 =

∑
n∈Z |x[n]|

2 < ∞. Taking the discrete Fourier
transform (DFT) of (1), which is given by

x(eiω) =
(
Fx
)
(eiω) =

∑
n∈Z x[n] e

inω , ω ∈ [−π, π) ,

the input-output relation of S can equivalently be written in the fre-
quency domain as

y(eiω) =
(
Sx
)
(eiω) = f(eiω)x(eiω) , ω ∈ [−π, π)

wherein f is the transfer function of S and Parseval’s theorem im-
plies that x and y belong to the usual space L2(T) of square inte-
grable functions on the unit circle T = {z ∈ C : |z| = 1}. The
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system S is said to be stable if y = Sx ∈ `2 whenever x ∈ `2, and
it is well known that S is stable if and only if its transfer function f
is bounded, i.e. if and only if f ∈ L∞(T). Similarly, the causality
of S is reflected by the fact that its impulse response f = {f [k]}k∈Z
is zero on the negative half axis, i.e. f [k] = 0 for all k < 0. This
condition is equivalent to the requirement that the Z-transform

f(z) =
(
Zf
)
(z) =

∑∞
n=0 f [n] z

n (2)

of f is an analytic function for all z ∈ D = {z ∈ C : |z| < 1}.
So any causal, stable LTI system can be identified with a transfer

function f in the Hardy spaceH∞(D) of bounded analytic functions
in D [7]. Conversely, if the transfer function f of S is known then its
impulse response f = {f [n]}n∈Z can, in principle, be determined
by the inverse DFT

f [n] = 1
2π

∫ π
−π f(e

iω) e−inω dω , n ∈ Z . (3)

where {f [n]}n∈Z are also called the Fourier coefficients of f .
The design of stable, causal LTI systems is often based on op-

timization techniques which derive the transfer function f of the
desired system based on some optimality criteria (optimal filtering,
pre-whitening, etc.) [8–15]. The so obtained f has often a very com-
plicated structure without any closed form analytic representation.
As a result of the optimization, f is often only given by its values on
a certain discrete sampling set Z = {eiωk : k = 1, . . . ,M}. Then
a usual approach is to approximate the optimal transfer functions by
simpler stable systems which are known analytically.

A very natural and common technique is to represent f in a basis
[3–5]. Let B be an arbitrary Banach space (the signal space) and let
ϕ = {ϕn}∞n=0 be a basis for B. Then every f ∈ B can be written as

f =
∑∞
n=0 cn(f)ϕn (4)

with coefficients {cn(f)}∞n=0 ⊂ C. An approximation f̃ of f is
obtained by restricting the sum in (4) to its first N terms, i.e. by

f̃N = PNf =
∑N
n=0 cn(f)ϕn , N = 0, 1, 2, . . . (5)

Since ϕ is a basis for B, the approximation error
∥∥f − f̃N∥∥B gets

arbitrarily small as the approximation degreeN becomes sufficiently
large. Therewith, the desired approximation of f is obtained [16].

To make this approximation procedure effective, one only has to
determine numerically the coefficients {cn(f)}∞n=0 in (4) for every
f ∈ B. This paper investigates whether this is always possible, i.e.
whether the approximation (5) is computable. We are going to show
that in a whole scale of Banach spaces B ⊂ H∞(D), which posses
a very simple basis (the Fourier basis), there exists no numerical
procedure to determine the coefficients cn(f) in the expansion (5)
and such that the approximation (5) converges in the norm of B (and
uniformly) to the desired f ∈ B. Thus, we are going to show that
these bases are not computable.
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2. SCHAUDER BASES & CAUSAL APPROXIMATIONS

Schauder bases in Banach spaces Let B be a separable Banach
space with norm ‖·‖B. One says that B possesses a (Schauder)
basis {ϕn}∞n=0 if to every f ∈ B there exists a unique sequence
{cn(f)}∞n=0 ⊂ C such that (4) holds and where the series converges
in the norm of B [16–18]. If {ϕn}∞n=0 is a Schauder basis then the
corresponding coefficient functionals cn : B → C are known to be
linear and continuous. Moreover, the series (4) converges in B if and
only if the partial sums PN : B → B, given in (5), satisfy

supN∈N ‖PN‖B→B < +∞

where the operator norm of a mapping P : Ba → Bb from Banach
space Ba to Bb is defined as usual by

‖P‖Ba→Bb = supf∈Ba ,‖f‖Ba
≤1 ‖Pf‖Bb . (6)

The following lemma provides a useful characterization of bases in
Banach spaces B in terms of series of bounded linear operators [16].
Lemma 1: If {ϕn}∞n=0 is a Schauder basis for a Banach space B
then the corresponding operators (5) satisfy the following properties

1) lim
N→∞

‖PNf − f‖B = 0 for all f ∈ B

2) dim
[
PN (B)

]
= N + 1

3) PNPM = Pmin(N,M) .

Conversely, assume {PN}∞N=0 is a sequence of linear operators
which satisfies properties 1) – 3) then every sequence {ϕn}∞n=0 with

ϕ0 ∈ P0(B) and ϕn ∈ Pn(B) ∩ kern(Pn−1) , n ∈ N

is a Schauder basis for B.

Signal spaces of causal functions The Banach space of all func-
tions continuous on T with the norm ‖f‖∞ = maxζ∈T |f(ζ)| is
denoted by C(T), and the disk algebraA(D) ⊂ C(T) is the set of all
functions which are analytic in D and continuous in the closed unit
disk D = {z ∈ C : |z| ≤ 1} [7, 19]. It becomes a Banach space if it
is equipped with the norm ‖f‖∞ = maxz∈D |f(z)|.

Every f ∈ A(D) possesses a power series expansion (2) with
Fourier coefficients {f [n]}∞n=0 of f given by (3). It is important
to note that for f ∈ A(D) the power series (2) converges only
pointwise for every z ∈ D but it does not converge in the norm
of A(D) (i.e. not uniformly), in general. This implies that the set
ζ = {ζn(z) := zn}∞n=0 is not a basis for A(D). This shortcoming
of ζ motivates the definition of the subset U of all f ∈ A(D) which
posses a uniformly converging power series [20]: Let f ∈ A(D) be
arbitrary with Fourier coefficients (3). For every N ∈ N let(

PNf
)
(z) =

∑N
n=0 f [n] ζn(z) =

∑N
n=0 f [n] z

n (7)

be its partial power series. Therewith, we define the norm

‖f‖U = supN∈N ‖PNf‖∞ (8)

and the space U = span{f ∈ P}
‖·‖U as the closed linear span of

all polynomials, with the closure taken with respect to the norm (8).
The so defined U , together with norm (8), is a separable Banach
space and the Theorem of Banach–Steinhaus implies that

U =
{
f ∈ A(D) : lim

N→∞
‖f − PNf‖∞ = 0

}
. (9)

By the definition of U , it is clear that {ζn}∞n=0 is a basis for U , that
‖ζn‖U = 1 for all n, and that ‖PN‖U→U = 1 for all N ∈ N.

Next, we introduce a collection of subspaces of A(D) [19]. To
this end, we define for any α, β ≥ 0 the functional

‖f‖α,β =
(∑∞

n=1 n
α (1 + logn)β

∣∣f [n]∣∣2)1/2
on A(D), and therewith the scale of Banach spaces

Bα,β =
{
f ∈ A(D) : ‖f‖α,β < +∞

}
, α, β ≥ 0 ,

equipped with the norm ‖f‖Bα,β= max
(
‖f‖∞ , ‖f‖α,β

)
. The

parameters α, β characterize the decay of the Fourier coefficients
and it is clear that Bα′,β ⊂ Bα,β ⊂ B0,β for all α′ > α > 0 and
similarly Bα,β′ ⊂ Bα,β ⊂ Bα,0 for all β′ > β > 0.

Subsequently, we consider mainly the space B1,1 which will be
denoted by B1, for simplicity of notation. Finally, we notice in the
following lemma that B1 has the same basis as U .
Lemma 2: We have B1 ⊂ U and ζ = {ζn(z) = zn}∞n=0 is a basis
(the Fourier basis) of B1 with coefficient functionals

cn(f) =
1
2π

∫ π
−π f(e

iω) ζn(eiω) dω = f [n] . (10)

Proof: To prove that ζ is a basis for B1, one has to show that the
operator norms ‖PN‖B1→B1 are uniformly bounded. To see this,
we note that there is a constant C1 such that ‖PNf‖∞ ≤ C1 ‖f‖1.
Indeed for any f ∈ B1 and all z ∈ D, we have

|(PNf)(z)| ≤
∑N
n=0 |cn(f)| |ζn(z)| ≤

∑N
n=0

√
n logn|cn(f)|√

n logn

≤
(∑N

n=0
1

n logn

)1/2 (∑N
n=0 n logn |cn(f)|

2
)1/2

≤ C1 ‖f‖1 ≤ C1 ‖f‖B1 ,

using Cauchy–Schwarz inequality to obtain the second line. In com-
bination with the obvious inequality ‖PNf‖1,1 ≤ ‖f‖1,1 ≤ ‖f‖B1 ,
one obtains ‖PNf‖B1 ≤ max(1, C1) ‖f‖B1 showing that the op-
erator norms ‖PN‖B1→B1 are uniformly bounded.

Computable approximations Both spaces U and B1 possess the
Fourier basis ζ = {ζn}∞n=0. If we are able to calculate the coeffi-
cients (10) for every f in U or B1 then we can determine the approx-
imation (5) with ϕn = ζn for every n ∈ N. Since ζ is a basis, the
approximation PNf converges in the norm of B1 and U (and also
uniformly) to f . So for B = U or B = B1, one has

limN→∞ ‖PNf − f‖B = 0 for all f ∈ B .

However, the integral in (10) can usually not calculated perfectly,
because f(eiω) is not known for all ω ∈ [−π, π) but only at finitely
many sampling points on T. Moreover, in order to evaluate (10) on a
digital computer, it is only possible to incorporate finitely many sam-
ples of f , otherwise the computational time goes to infinity. Here,
we discuss two common and natural ways to evaluate (10) from sam-
ples of f . 1) The calculation of (10) via numerical integration and
2) the existence of a so called computational bases. We are going to
show that both methods fail on U and B1.

3. APPROXIMATION VIA NUMERICAL INTEGRATION

To determine the values of the coefficient functionals (10), one may
apply numerical integration methods to evaluate numerical approxi-
mations cN,n of the coefficients (10).
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Example 1: A simple way to approximate the integral in (10) is the
application of the rectangular formula of the Riemann sum bases on
M =M(N) equidistant samples of f on T, i.e.

cn(f) ≈ cN,n(f) = 1
M(N)

∑M(N)
k=1 f(zN,k) ζn(zN,k) (11)

wherein ZN =
{
zN,k = ei

2π
M

(k−1)
}M(N)

k=1
⊂ T is the sampling set.

Remark: More approximation methods are obtained by applying
other quadrature formulas or by allowing for different (not necessar-
ily equidistant) sampling sets.

Now one can use the approximated coefficients cN,n(f) instead of
the unknown true values cn(f) and determine the approximations

QNf =
∑N
n=0 cN,n(f) ζn , N ∈ N (12)

of f . The question is whether QNf converges to f as N → ∞ for
any f in U or B1. Here we make no restrictions on the quadrature
methods apart from two natural assumptions:

(i) To every N ∈ N and there exists an M(N) ∈ N and a set
ZN = {zN,1, . . . , zN,M(N)} ⊂ T such that the functionals
cN,n(f) depend only on the values of f on ZN .

(ii) The operators QN defined by (12) satisfies

limN→∞ ‖QNζn − ζn‖∞ = 0 for all n = 0, 1, 2, . . . .

Condition (i) requires that the functionals cN,n(f) are uniquely de-
termined by the values of f on a finite set ZN . Again, this require-
ment is necessary to implement the integration method on a digital
computer. Condition (ii) requires that the approximative functionals
cN,n are such that at least the basis elements ζn are perfectly recov-
ered by QN as N → ∞. Clearly, this is a minimal requirement in
order that QNf converges to f for all f in U or B1. Moreover, we
notice that because of(

QNζk
)
(z)− ζk(z) =

∑N
n=0 cN,n(ζk)z

k − zk ,

Condition (ii) implies that

lim
N→∞

cN,n(ζk) = cn(ζk) =

{
0 if n 6= k
1 if n = k

. (13)

Thus the integration method which yields the functionals cN,n has
the property that at least for the basis functions ζk the approximation
cN,n(ζk) converges to the correct Fourier coefficients cn(ζk).

Note that the sampling set ZN and the integration method can
depend on the approximation degree N ∈ N. For each N one may
choose completely new sets ZN and different quadrature methods.

Banach spaces without convergent methods We are going to
show that there are Banach spaces (U and B1) which posses a nice
basis (the Fourier basis) but for which there exists no way to replace
the exact coefficient functionals cn by some reasonable approxima-
tion cN,n which satisfy (i) and (ii) and such that the approximations
(12) converge to the desired f for all f in this Banach space.
Theorem 3: Let ζ = {ζn}∞n=0 be the Fourier basis of U and B1
and let {QN}∞n=1 be the sequence (12) of operators associated with
ζ and which satisfies conditions (i) and (ii), then

lim
N→∞

‖QN‖U→A(D) = lim
N→∞

‖QN‖B1→A(D) = +∞ ,

with the operator norms defined as in (6).

Theorem 3 shows that the norm of all operators (12) satisfying con-
ditions (i) and (ii) becomes arbitrarily large as the approximation de-
greeN goes to infinity. Applying the Theorem of Banach–Steinhaus
[21, Chapt. 5] one can reformulate this result as follows.

Corollary 4: Let B be equal to U or B1 and let {QN}N∈N be as in
Theorem 3. Then there exists a residual subsetR ⊂ B such that

lim supN→∞ ‖QNf‖∞ = +∞ for all f ∈ R .

So the set of all f in U and B1 for which the peak value of the
approximation QNf can be controlled is a meager set. As an imme-
diate consequence we have the following statement.

Corollary 5: Let B be equal to U or B1, and let ζ be the Fourier
basis of B. There exists no numerical integration method such that
the sequence of approximation operators {QN}N∈N in (12) satisfies
properties (i) and (ii) and such that

limN→∞ ‖QNf − f‖∞ = 0 for all f ∈ B .

Remark: Corollary 4 showed divergence in the uniform norm. Since
‖f‖U ≥ ‖f‖∞ and ‖g‖B1 ≥ ‖g‖∞ for all f ∈ U and g ∈ B1 these
results imply the divergence in the Banach space norm of U and B1.

Remark: Since B1 ⊂ Bα,β for all 0 ≤ α, β ≤ 1, it follows that
Thm. 3 and Corollaries 4 and 5 hold for all Bα,β with 0 ≤ α, β ≤ 1,
and since B1 ⊂ U (cf. Lemma 2), these results hold also for U .

Banach spaces with convergent methods Considering smaller
and smaller subsets of A(D), one should finally find subspaces of
A(D) such that approximations of the form (12) converge for all f
in this subspace. Indeed, our next theorem presents such subspaces.

Theorem 6: Let α ≥ 1 and β > 1 and let {QN}N∈N be the se-
quence defined in (12) with the coefficients cN,n(f) calculated by
(11) with M(N) ≥ N . Then

limN→∞ ‖QNf − f‖Bα,β for all f ∈ Bα,β . (14)

Remark: Note that the norm convergence (14) implies the uniform
convergence for all f ∈ Bα,β .

So we see that the negative result of Theorem 3 is sharp in the scale
of the Banach spaces {Bα,β}: For all α, β ≤ 1 no convergent
method exist whereas for any pair α, β with α ≥ 1 and β > 1
even very simply approximations as in Example 1 always converge.

4. COMPUTATIONAL BASES

It is known that there exist Banach spaces B which posses a ba-
sis {ϕn}∞n=0 such that the corresponding coefficient functionals
{cn(f)} depend only on finitely many samples of f .

Definition 1 (Computational basis): Let B be a separable Banach
space of continuous functions on T and let ϕ = {ϕn}∞n=0 be a
basis for B. We call ϕ a computational basis if the corresponding
coefficient functionals {cn(f)} of ϕ have the following property:
To every n = 0, 1, 2, . . . there exists an µ(n) ∈ N and distinct
numbers z1,n, . . . , zµ,n ∈ T such that cn(f) does only depend on
the values f(zk,n), 1 ≤ k ≤ µ(n) for every f ∈ B.

Remark: In other words, ϕ is a computational basis if and only if
for all functions f, g ∈ B with f(zk,n) = g(zk,n) for all k =
1, . . . , µ(n) one has cn(f) = cn(g) for all n = 0, 1, 2, . . . .
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So a computational basis allows to determine the approximation (5)
perfectly from only finitely many samples of f . Then PNf → f ,
since {ϕn}∞n=0 is a basis. For a large number of Banach spaces
of continuous functions on T, computational bases are known [18].
One concrete example is the spline basis for C(T).

We want to investigate whether U and B1 posses a computa-
tional basis. Since A(D) is a closed dense subspace of C(T) and
since U ,B1 ⊂ A(D), it is clear that every f in U or B1 can arbitrar-
ily well approximated in any computational basis of C(T). However,
the corresponding approximate function does not belong to U or B1

but only to C(T). So the approximating function f̃N may not be
causal, thought we want to approximate a causal f . Thus a com-
putational basis for C(T) does generally not give a causal system
approximation. Therefore, we investigate next whether the causal
subspaces U and B1 posses a computational basis. The following
theorem gives a negative answer.
Theorem 7: The spaces U and B1 possess no computational basis.

Remark: Again, since B1 ⊂ Bα,β for all 0 ≤ α, β ≤ 1, it easily
follows that Theorem 7 holds for all spaces Bα,β with 0 ≤ α, β ≤ 1.

Remark: We note without proof that in all Bα,β with α ≥ 1 and
β > 1 it is possible to find a computational basis {ϕn}∞n=0 such that
limN→∞

∥∥∑N
n=0 cn(f)ϕn − f

∥∥
∞ = 0 for all f ∈ Bα,β .

5. PROOF SKETCHES OF THE MAIN RESULTS

We start with a detailed sketch of proof of Theorem 3.
Sketch of proof (Thm. 3): The poof is divided into several steps:
1) We assume the contrary, namely that

lim infN→∞ ‖QN‖B1→A(D) <∞ . (15)

By passing to a subsequence if necessary, we can assume that
C1 := supN∈N ‖QN‖B1→A(D) < +∞.
2) One considers the approximation error RNf := f − QNf .
Assumption (15) shows that for every k = 0, 1, . . . the sequence
{(RNζk)(z)}N∈N is uniformly bounded in D and so it converges
for every z ∈ D. Using a theorem of Vitali [22, § 5.2] and Cauchy’s
integral theorem, one shows that for all r ∈ (0, 1)

lim
N→∞

max
|z|<r

∣∣ (RNζk) (z)∣∣ = lim
N→∞

max
|z|<r

∣∣ζk(z)−QNζk(z)
∣∣ = 0 .

3) Let p(z) =
∑M
k=−M akz

k be an arbitrary trigonometric polyno-
mial with its causal part denoted by p+(z) =

∑M
k=0 ak ζk(z). Then

Step 2) implies limN→∞ (QN p+) (z) = p+(z) for all z ∈ D and
one can show that there exists a constant C2 such that∣∣ (QN p+) (z)∣∣ ≤ 1

2π

∫ π
−π

∣∣(QN pθ)(zeiθ)∣∣ dθ
≤ C2 ‖QN‖B1→A(D) ‖p‖C(T) ≤ C2 C1 ‖p‖C(T) .

Together with the previous equation we thus get

|p+(z)| ≤ C2 C1 ‖p‖C(T) , z ∈ D . (16)

4) Finally, one considers the particular trigonometric polynomial

q(z) = 1
2i

∑K
k=1

1
k

(
zk − z−k

)
for which there exists a constant C3 such that ‖q‖C(T) ≤ C3 for all
K ∈ N [23]. Then (16) yields |q+(z)| ≤ C3 C2 C1 for all z ∈ D.
Since the right hand side does not depend on z this inequality holds
also for |z| = 1. However, for z = 1 we get

C1 C2 C3 ≥ |q+(1)| =
∣∣∑K

k=1
1
k

∣∣ ≥ log(K + 1) ,

and for sufficiently large K this yields a contradiction.

Next, we are going to prove Theorem 7. This proof is based on a
lemma from [24]. It makes a statement on a class of linear operators
characterized by two simple axioms, which are defined next.
Definition 2: Let {TN}N∈N be a sequence of bounded linear oper-
ators TN : A(D)→ A(D). We say that {TN}N∈N satisfies Axiom

(A) if to every N ∈ N there is an M(N) ∈ N and a finite set
ZN = {zN,1, . . . , zN,M} ⊂ T so that for all f1, f2 ∈ A(D)

f1(zN,k) = f2(zN,k) ∀ k = 1, . . . ,M(N)

implies
(
TNf1

)
(z) =

(
TNf2

)
(z) ∀ z ∈ D .

(B) if there exists a dense subsetM⊂ A(D) such that

limN→∞ ‖TNf − f‖∞ = 0 for all f ∈M .

For this class of operators the following result can be proven [24].
Lemma 8: Let {TN}N∈N be a sequence of bounded linear opera-
tors TN : A(D)→ A(D) satisfying Axioms (A) and (B), then there
are functions f1 ∈ U and f2 ∈ B1 such that

lim supN→∞ ‖TNfi‖∞ = +∞ , i = 1, 2 .

Based on this Lemma, Theorem 7 can easily verified.
Proof (Thm. 7): We prove the statement for B1. Letϕ = {ϕn}∞n=0

be a computational basis forB1 with coefficient functionals {cn}Nn=0.
For any f ∈ B1 and N ∈ N we consider the partial sum PNf given
in (5). It is obvious that {PN}N∈N satisfies Axiom (A) with the
sampling sets ZN = ∪Nn=0{zk,n}

µ(n)
k=1 . Since ϕ is a basis for B1

we have limN→∞ ‖PNf − f‖B1 = 0 for every f ∈ B1, and there
exists a constant C4 such that

‖PN‖B1→A(D) ≤ ‖PN‖B1→B1 ≤ C4 for allN ∈ N , (17)

where the first inequality follows from ‖PNf‖∞ ≤ ‖PNf‖B1 . So

limN→∞ ‖PNf − f‖∞ = 0 for all f ∈ B1 . (18)

Next we observe that B1 is dense in A(D). This follows because ϕ
is a basis for B1 and because the Fejér-means of the power series (7)
converges uniformly to f for any f ∈ A(D) [23]. So (18) shows
that {PN}N∈N satisfies (B) withM = B1. Then Lemma 8 implies
limN→∞ ‖PN‖B1→A(D) = +∞. This contradicts (17) and so the
assumption that ϕ is a computational basis for B1 was wrong. The
proof for U is almost exactly the same.

6. DISCUSSION AND OUTLOOK

Up to now there exist only results showing that particular filter de-
sign and approximation methods diverge on the disk algebra A(D)
[25]. There was no observation showing that to every proposed de-
sign method there always exist some transfer functions for which
divergence occurs. So a general theory to investigate divergence and
convergence of practical methods is missing. This paper presented
some results in this direction and gave a precise characterization of
subspaces of A(D) on which approximations due to basis expan-
sions are practically possible and on which they are impossible.

In [26] a result similar to Theorem 3 but for approximations of
the Hilbert transform was proven, and in [27] this result was ex-
tended to a scale of Sobolev-like spaces similar to Bα,β . For all
these results, it is crucial that the approximation operators (12) are
linear. Then standard techniques from functional analysis can be
applied. In a recent work [28], it was possible to drop this linearity
condition for Hilbert transform approximation and it is an interesting
open question whether Theorem 3 holds also for non-linear approx-
imation operators QN having Properties (i) and (ii) from Sec. 3.
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