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ABSTRACT

The kernel-induced sampling theorem enables us to determine
whether the sampling theorem holds or not for a reproducing kernel
Hilbert space and a given set of sampling points. However, it is not
easy to specifically calculate the necessary and sufficient condition
formula except in some special cases, since it includes the inverse of
an infinite dimensional Gramian matrix. In this paper, we discuss the
kernel-induced sampling theorem restricted to a translation-invariant
reproducing kernel Hilbert space with uniform sampling; and intro-
duce an alternative necessary and sufficient condition formula, in
which the inverse of the Gramian matrix is explicitly treated, by
incorporating the theory of Laurent operators.

Index Terms— reproducing kernel Hilbert space, kernel-
induced sampling theorem, translation-invariant space, uniform
sampling, Laurent operator

1. INTRODUCTION

The sampling theorem [1] is one of crucial foundations in the field of
digital signal processing since it guarantees that obtained digital sig-
nals contain all information of the corresponding original analogue
signals. So far, so many generalizations and extensions of the sam-
pling theorem have been introduced (see [2, 3] and their references
cited in). In particular, the relationship between the sampling theory
and the theory of reproducing kernel Hilbert spaces [4, 5, 6] is note-
worthy since the theory of reproducing kernel Hilbert spaces gives
a unified mathematical framework for sampling and reconstruction
processes in the sampling theory [7, 8]. Motivated by these works,
we introduced a necessary and sufficient condition formula of the
sampling theorem for general reproducing kernel Hilbert spaces in
[9, 10], called the ’Kernel-Induced Sampling Theorem’. By using
this formula, we can determine whether the sampling theorem holds
or not for the given kernel, corresponding to a considered reproduc-
ing kernel Hilbert space, and a given set of sampling points. In fact,
we gave alternative proofs of the Shannon’s sampling theorem in
[9] and the sampling theorem for the space of bandpass functions in
[10]; and we proved that a certain Sobolev space did not have a sam-
pling theorem in [9]. However, it is not so easy to specifically cal-
culate the formula in more general cases since the formula includes
the inverse of an infinite dimensional Gramian matrix. Due to this
difficulty, it is hard to explicitly confirm whether the necessary and
sufficient condition formula holds or not, and it is even difficult to
confirm it numerically.
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As can be seen in the Shannon’s sampling theorem, the sampling
theorem for translation-invariant spaces with uniform sampling has
a special importance in the field of digital signal processing. Under
such conditions, the Gramian matrix is reduced to a Laurent oper-
ator [11]. In this paper, we introduce an alternative necessary and
sufficient condition formula of the kernel-induced sampling theo-
rem specialized for translation-invariant reproducing kernel Hilbert
spaces with uniform sampling on the basis of the theory of Laurent
operators by which the difficulty of the inverse of the infinite dimen-
sional Gramian matrix is resolved.

2. REPRODUCING KERNEL HILBERT SPACES

In this section, we give a brief overview of the theory of reproducing
kernel Hilbert spaces [4, 5, 6].

Definition 1 [4] Let Rd be a d-dimensional real vector space and
let H be a class of functions defined on Rd, forming a Hilbert space
of real-valued functions. The function K(x,y), (x,y ∈ Rd) is
called a reproducing kernel of H, if (1) ∀x ∈ Rd, K(·,x) ∈ H,
and (2) ∀x ∈ Rd, ∀f ∈ H,

f(x) = ⟨f(·),K(·,x)⟩H, (1)

hold, where ⟨·, ·⟩H denotes the inner product of the Hilbert space H.

The Hilbert space H that has a reproducing kernel is called a
reproducing kernel Hilbert space (RKHS). Eq.(1) is called the re-
producing property of a kernel. Note that a reproducing kernel is
positive definite and symmetric, and has the unique corresponding
RKHS [4]. Hereafter, we use the symbol HK for the RKHS corre-
sponding to a kernel K.

The following theorem is one of the most important properties
of an RKHS.

Theorem 1 [9] The set {K(·,y) | y ∈ Rd} is complete in HK .

According to this theorem, any function f ∈ HK can be repre-
sented by

f(·) =
∑
y∈Rd

cyK(·,y), (2)

with certain coefficients cy ∈ R.

4554978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



3. KERNEL-INDUCED SAMPLING THEOREM

In this section, we give a brief overview of the kernel-induced sam-
pling theorem introduced in [9].

We consider the RKHS HK corresponding to a certain kernel
K and set of sampling points X = {xk ∈ Rd | k ∈ N}, where N
stands for the set of natural numbers. The goal of the kernel-induced
sampling theorem is to obtain a necessary and sufficient condition
for K and X to perfectly reconstruct any function f ∈ HK as a
linear combination of K(·,xk), (k ∈ N). In other words, we need a
necessary and sufficient condition for K and X that leads HK = S,
where

S = span{K(·,xk) | xk ∈ X, k ∈ N} (3)
with · denoting the closure of a given set. Let PS be the orthogonal
projector onto S in HK , whose closed-form [9] is given by

PS =
∑

j,k∈N

G−1
jk (K(·,xj)⊗K(·,xk)), (4)

where G = (K(xj ,xk)) denotes the Gramian matrix of K with X
and ⊗ denotes the Schatten product [12, 9]. Then, HK = S if and
only if f(·) − PSf(·) = 0 for any f ∈ HK . Since any function
f ∈ HK can be represented by Eq.(2), we can say that HK = S if
and only if

K(·,y)− PSK(·,y) = 0 (5)
holds for any y ∈ Rd. Evaluating the squared norm of the both
sides of Eq.(5) by using the reproducing property Eq.(1) and Eq.(4)
and applying the Pythagorean theorem lead the following theorem
(see [9] for more details).

Theorem 2 [9] HK = S if and only if

K(y,y)−
∑

j,k∈N

K(y,xj)G
−1
jk K(y,xk) = 0 (6)

holds for any y ∈ Rd.

By checking whether Eq.(6) holds or not, we can determine
whether the sampling theorem holds for HK with X or not. How-
ever in general, it is hard to explicitly calculate G−1 in Eq.(6), and
it is even hard to calculate numerically.

4. KERNEL-INDUCED SAMPLING THEOREM FOR
TRANSLATION-INVARIANT RKHS WITH UNIFORM

SAMPLING

In this section, we discuss the kernel-induced sampling theorem for a
one dimensional translation-invariant RKHS with uniform sampling.

A translation-invariant RKHS [13] is defined as the RKHS HK

such that
f(·) ∈ HK ⇒ f(· − r) ∈ HK (7)

for any r ∈ Rd. When a kernel K(x,y) only depends on x−y, that
is, K(x,y) = KT (x − y) holds with some one variable function
KT , the corresponding HK is a translation-invariant RKHS since
when K(·,x) ∈ HK for a certain x ∈ Rd (which is guaranteed by
Definition 1), we have

K(· − r,x) = KT (· − r − x) = K(·, (x+ r)) ∈ HK

for any r ∈ Rd, which immediately implies that Eq.(7) holds from
Eq.(2). Hereafter, we assume that a kernel K is corresponding to a
translation-invariant RKHS defined on R.

Let us consider the set of one dimensional equidistant sampling
points X = {sk | k ∈ Z} with a certain positive real number s 1,

1Here, s represents the interval of sampling points.

where Z stands for the set of integers. Then, the Gramian matrix of
K with X is reduced to

G = (K(sj, sk)) = (KT (s(j − k)))

=



. . .
. . .

. . .
. . .

. . .
. . . KT (0) KT (−s) KT (−2s)

. . .
. . . KT (s) KT (0) KT (−s)

. . .

. . . KT (2s) KT (s) KT (0)
. . .

. . .
. . .

. . .
. . .

. . .


, (8)

where KT (0) is the (0, 0) position of the doubly infinite matrix G.
It is trivial that G is symmetric, since a kernel is symmetric. It is
known that the matrix given by Eq.(8) (not limited to be symmetric
in general) is called a Laurent operator [11].

Here, we briefly describe the theory of Laurent operators ac-
cording to the descriptions in [11] (see Chapter III in [11] for more
details).

Definition 2 [11] A Laurent operator A is a bounded linear opera-
tor on ℓ2(Z) with the property that the matrix of A with respect to
the standard orthonormal basis {ej}j∈Z of ℓ2(Z) is of the form

A =



. . .
. . .

. . .
. . .

. . .
. . . a0 a−1 a−2

. . .
. . . a1 a0 a−1

. . .
. . . a2 a1 a0

. . .
. . .

. . .
. . .

. . .
. . .


. (9)

Let L2([−π, π]) be the Hilbert space of square integrable func-
tions defined on [−π, π], provided the inner product2

⟨f, g⟩L2([−π,π]) =
1

2π

∫ π

−π

f(t)g(t)dt, (10)

where · stands for the complex conjugate of a give complex value
(or a complex valued function).

Let α(t) be a bounded complex valued Lebesgue measurable
function defined on [−π, π], and let M be the corresponding opera-
tor of multiplication by α(t) on L2([−π, π]), that is,

(Mf)(t) = α(t)f(t), f ∈ L2([−π, π]). (11)

Then, the operator M is a bounded linear operator on L2([−π, π])
and the matrix of M with respect to the orthonormal basis3 ϕn(t) =
eint, (n ∈ Z) is given by Eq.(9), where

an =
1

2π

∫ π

−π

α(t)e−intdt, n ∈ Z. (12)

2In [11], division by 2π is missing. However, it is needed for the contents
in [11] to be consistent.

3In [11], eint/
√
2π is used for the orthonormal basis function with the

standard L2 inner product. However, it is also inconsistent with the other
contents in [11].
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It follow that the operator A in Eq.(9) is represented by A =
FMF−1, where F is the Fourier transform on L2([−π, π]), de-
fined as

Ff(t) = (fn)n∈Z, fn =
1

2π

∫ π

−π

f(t)e−intdt (13)

whose corresponding inverse Fourier transform is given by

F−1(fn)n∈Z =
∑
n∈Z

fne
int. (14)

When (ak)k∈Z is given a priori,

α(t) = F−1(ak)k∈Z =
∑
k∈Z

ake
ikt, (15)

holds, which is confirmed by substituting Eq.(15) into Eq.(12). Ac-
cordingly, A−1 = FM−1F−1 holds, where the operator M−1 is
specified by

(M−1f)(t) =
1

α(t)
f(t), f ∈ L2([−π, π]). (16)

Note that F−1 is the adjoint operator of F , denoted by F∗, since for
any f(t) =

∑
n∈Z fne

int ∈ L2([−π, π]) and any g = (gn)n∈Z ∈
ℓ2(Z), we have

⟨f(t),F−1g⟩L2([−π,π])

=
1

2π

∫ π

−π

(∑
n∈Z

fne
int

)(∑
n∈Z

gneint

)
dt

=
1

2π

∑
n∈Z

fngn

∫ π

−π

dt =
∑
n∈Z

fngn = ⟨Ff(t), g⟩ℓ2(Z).

On the basis of the above discussions, we introduce an alter-
native formula of the kernel-induced sampling theorem specialized
for a one dimensional translation-invariant RKHS with the set of
equidistant sampling points X = {sk | k ∈ Z} with s > 0.

Let vy = (K(y, sk))k∈Z ∈ ℓ2(Z) and let

vy(t) = F−1vy =
∑
k∈Z

K(y, sk)eikt ∈ L2([−π, π]). (17)

Also let G = FMF−1, where M is an operator of multiplication
by

u(t) =
∑
k∈Z

K(0, sk)eikt ∈ L2([−π, π]), (18)

which is obtained from the components of the matrix G as the same
with Eq.(15). Then, the second term of the left hand side in Eq.(6) is
reduced to ∑

j,k∈Z

K(y, sj)G−1
jk K(y, sk)

= vT
y G

−1vy = ⟨G−1vy,vy⟩ℓ2(Z)

= ⟨FM−1F−1vy,vy⟩ℓ2(Z)

= ⟨M−1F−1vy,F∗vy⟩L2([−π,π])

= ⟨M−1F−1vy,F−1vy⟩L2([−π,π])

=

⟨
1

u(t)
vy(t), vy(t)

⟩
L2([−π,π])

=
1

2π

∫ π

−π

vy(t)vy(t)

u(t)
dt. (19)

Therefore, we have the following theorem.

Theorem 3 Let K be the kernel corresponding to a one dimensional
translation-invariant RKHS HK defined on R and let

S = span{K(·, sk) | k ∈ Z}, s > 0. (20)

Then HK = S if and only if

K(y, y)− 1

2π

∫ π

−π

vy(t)vy(t)

u(t)
dt = 0 (21)

holds for any y ∈ R, where vy(t) and u(t) are given by Eqs.(17)
and (18).

5. EXAMPLES

We give some examples of Theorem 3. The former two examples are
the same results obtained in [9], and the others lead the knowledge
which is clarified for the first time by our Theorem 3.

5.1. Shannon’s Sampling Theorem

Let

K1(x, y) =
sinπ(x− y)

π(x− y)
, x, y ∈ R (22)

be the sinc kernel corresponding to the RKHS consisting of all π-
band-limited functions, and let X = {k | k ∈ Z} be the set of
sampling points.

It is trivial that K1(y, y) = 1 for any y ∈ R. Since

u(t) =
∑
k∈Z

sinπ(0− k)

π(0− k)
eikt = 1,

vy(t) =
∑
k∈Z

sinπ(y − k)

π(y − k)
eikt.

we have

1

2π

∫ π

−π

vy(t)vy(t)

u(t)
dt

=
1

2π

∫ π

−π

∑
k∈Z

(
sinπ(y − k)

π(y − k)

)2

dt

=
∑
k∈Z

(
sinπ(y − k)

π(y − k)

)2

= 1

for any y ∈ R. Thus, Eq.(21) is satisfied, which is almost the same
proof with that obtained in [9] (see Section VI-A in [9]).

5.2. Sobolev Space W 1,2

The Sobolev space W 1,2 is the RKHS whose norm is defined by

||f ||W1,2 =

(∫ ∞

−∞
|f(t)|2 + |f ′(t)|2dt

)1/2

(23)

and the corresponding kernel is given by

K2(x, y) =
1

2
e−|x−y|, x, y ∈ R (24)

as shown in [6]. It is trivial that K2(y, y) = 1/2 for any y ∈ R. Let
X = {sk | k ∈ Z} with s > 0 be the set of sampling points. In [9],
it is proved that the sampling theorem does not hold for this case.
Thus, it is enough to consider y = s/2 ̸∈ X instead of any y ∈ R
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in order to follow the result obtained in [9]. Note that the following
calculations were conducted by Mathematica [14]. Since

u(x) =
1

2

∑
k∈Z

e−s|k|eikt =
1

2csch(s)(cosh(s)− cos(t))
,

vs/2(t) =
1

2

∑
k∈Z

e−s|1/2−k|eikt =

(
1 + eit

)
sinh (s/2)

2(cosh(s)− cos(t))
,

we have

1

2π

∫ π

−π

vs/2y(t)vs/2(t)

u(t)
dt

=
1

2π

∫ π

−π

tanh (s/2) cos2 (t/2)

cosh(s)− cos(t)
dt =

1

es + 1
, (25)

which can not be equal to 1/2 with a positive s. Thus, the sampling
theorem for W 1,2 with X does not hold with any s > 0.

Note that this result agrees to the result obtained in [9] (see
Eq.(53) in Section VI-C in [9]). In fact, Eq.(25) is trivially obtained
by substituting y = 1/2 to Eq.(53) in [9]. It is noteworthy that our
calculation does not use the explicit formula of G−1.

5.3. Sobolev Space W 2,2

The Sobolev space W 2,2 is the RKHS whose norm is defined by

||f ||W2,2 =

(∫ ∞

−∞
|f(t)|2 + |f ′(t)|2 + |f ′′(t)|2dt

)1/2

(26)

and the corresponding kernel is given by

K3(x, y) =
1

4
e−|x−y|(1 + |x− y|), x, y ∈ R (27)

as shown in [6]. It is trivial that K3(y, y) = 1/4 for any y ∈ R. Let
X = {sk | k ∈ Z} with s > 0 be the set of sampling points. As
the same with the previous example, we consider y = s/2, by which
we intend to show that the sampling theorem does not hold for W 2,2

with X for any s > 0. We have

u(x) =
1

4

∑
k∈Z

e−s|k|(1 + s|k|)eikt

=
cosh(s)(s cos(t) + sinh(s))− sinh(s) cos(t)− s

4(cos(t)− cosh(s))2
,

vs/2(t) =
1

4

∑
k∈Z

e−s|1/2−k|(1 + s|1/2− k|)eikt

=
e2s+

5it
2 cos (t/2)

(−1 + es+it)2 (es − eit)2

× [s cosh (s/2) (cosh(s) + cos(t)− 2)

+ 2 sinh (s/2) (cosh(s)− cos(t))] .

Table 1 shows numerical results of the left hand side of Eq.(21) with
respect to some specific s’s 4.

According to these results, it is suggested that the left hand side
of Eq.(21) is positive for any s > 0, which implies that the sam-
pling theorem does not hold for W 2,2 with a positive s, although

4Mathematica failed to calculate the integral Eq.(19) with the interval pa-
rameter s remaining in vs/2(t). Thus, we calculate the exact integral value
of Eq.(19) by substituting some specific number to s in advance, and then
numerized.

Table 1. Numerical results of the left hand side of Eq.(21), denoted
by LHS, with some specific s.

s LHS
101 2.491832090521× 10−1

100 9.620518266448× 10−3

10−1 1.091301103237× 10−5

10−2 1.092733542065× 10−8

10−3 1.092747881898× 10−11

10−4 1.092748025298× 10−14

10−5 1.092748026732× 10−17

10−6 1.092748026746× 10−20

theoretical asymptotic behavior is not revealed. However, it is note-
worthy that these results are obtained for the first time by our for-
mula Eq.(21), while we have no way to obtain the same results by
the original formula Eq.(6).

5.4. Gaussian RKHS

Let
K4(x, y) = e−σ(x−y)2 , x, y ∈ R (28)

be the popular Gaussian kernel with the shape parameter σ > 0,
which is frequently used in many applications, such as machine
learning problems. However, the existence (or non-existence) of
the sampling theorem for the corresponding RKHS have not been
discussed so far.

Is is trivial that K4(y, y) = 1 for any y ∈ R. Let X = {k | k ∈
Z} be the set of sampling points5. We have

u(t) =
∑
k∈Z

e−σk2

eikt

=

√
π

σ
e−

t2

4σ ϑ3

(
− iπt

2σ
, e−

π2

σ

)
,

vy(t) =
∑
k∈Z

e−σ(y−k)2eikt

=

√
π

σ
e−

t2

4σ
+ityϑ3

(
− iπt

2σ
− πy, e−

π2

σ

)
,

where

ϑ3(u, q) = 1 + 2

∞∑
n=1

qn
2

cos(2nu), (29)

denotes the one of the four elliptic theta functions6. Unfortunately, it
seems hopeless to specifically calculate the integral in Eq.(19) since
the elliptic theta function is a transcendental function. However, it is
meaningful that our theorem 3 can point out the relationship between
the sampling theorem of the Gaussian RKHS and the elliptic theta
function.

6. CONCLUSION

In this paper, we discussed the kernel-induced sampling theorem for
a translation-invariant reproducing kernel Hilbert space with uni-
form sampling; and introduced an alternative and convenient nec-
essary and sufficient condition formula specialized for these cases.

5The shape parameter can be regarded as the square root of the interval.
6The elliptic theta functions has several definitions. The definition

Eq.(29) follows the definition in Mathematica.
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