
THE NETWORK NULLSPACE PROPERTY FOR COMPRESSED SENSING OF BIG DATA
OVER NETWORKS

Madelon Hulsebos1, Alexander Jung2

1Department of Computer Science, Delft University of Technology, Delft, The Netherlands
2Department of Computer Science, Aalto University, Finland; firstname.lastname(at)aalto.fi

ABSTRACT
We present a novel condition, which we term the net-
work nullspace property, which ensures accurate recovery
of graph signals representing massive network-structured
datasets from few signal values. The network nullspace
property couples the cluster structure of the underlying
network-structure with the geometry of the sampling set. Our
results can be used to design efficient sampling strategies
based on the network topology.

Index Terms— compressed sensing, big data, semi-
supervised learning, complex networks, convex optimization

I. INTRODUCTION

We introduce a novel recovery condition, termed the net-
work nullspace property (NNSP), which guarantees accurate
recovery of clustered (“piece-wise constant”) graph signals
from knowledge of its values on a small subset of sampled
nodes. The NNSP couples the clustering structure of the
underlying data graph to the locations of the sampled nodes
via interpreting the underlying graph as a flow network.

The presented results apply to an arbitrary partitioning,
but are most useful for a partitioning such that nodes in the
same cluster are connected with edges of relatively large
weights, whereas edges between clusters have low weights.
Our analysis reveals that if cluster boundaries are well-
connected (in a sense made precise) to the sampled nodes,
then accurate recovery of clustered graph signals is possible
by solving a convex optimization problem.

Most of the existing work applies spectral graph theory to
define a notion of band-limited graph signals, e.g. based on
principal subspaces of the graph Laplacian matrix, as well
as sufficient conditions for recoverability, i.e., sampling the-
orems, for those signals [4], [16]. In contrast, our approach
does not rely on spectral graph theory, but involves structural
(connectivity) properties of the underlying data graph.

The problem setup considered in this work is very similar
to those of [18], [21], which provide sufficient conditions
such that a variant of the Lasso method accurately recovers
smooth graph signals from noisy observations. However, in
contrast to this line of work, we assume the graph signal
values are only observed on a small subset of nodes.

II. PROBLEM FORMULATION
Many important applications involve massive heteroge-

neous datasets comprised heterogeneous data chunks, e.g.,
mixtures of audio, video and text data [5]. Moreover, datasets
typically contain mostly unlabeled data points; only a small
fraction is labeled data. An efficient strategy to handle such
heterogenous datasets is to organize them as a network or
data graph whose nodes represent individual data points.

II-A. Graph Signal Representation of Big Data
In what follows we consider datasets which are repre-

sented by a weighted data graph G=(V, E ,W) with nodes
V = {1, . . . , N}, each node representing an individual data
point. These nodes are connected by edges {i, j} ∈ E . In
particular, given some application-specific notion of simi-
larity, the edges of the data graph G connect similar data
points i, j ∈ V by an edge {i, j}∈E . In some applications
it is possible to quantify the extent to which data points are
similar, e.g., via the distance between sensors in a wireless
sensor network [22]. Given two similar data points i, j∈V ,
we quantify the strength of their connection {i, j} ∈ E by a
non-negative edge weight Wi,j ≥0 which we collect in the
symmetric weight matrix W ∈ RN×N

+ .
In what follows we will silently assume that the data graph
G is oriented by declaring for each edge {i, j} ∈ E one node
as the head e+ and the other node as the tail e−. For the
oriented data graph we define the directed neighbourhoods of
a node i∈V as N+(i) :={j∈N (i) :e = {i, j} ∈ E , and i =
e+} and N−(i) :={j∈N (i) :e = {i, j} ∈ E , and i = e−}.

Beside the edges structure E , network-structured datasets
typically also carry label information which induces a graph
signal defined over G. We define a graph signal x[·] over
the graph G = (V, E ,W) as a mapping V → R, which
associates (labels) every node i ∈ V with the signal value
x[i] ∈ R. In a supervised machine learning application,
the signal values x[i] might represent class membership in
a classification problem or the target (output) value in a
regression problem. We denote the space of all graph signals,
which is also known as the vertex space (cf. [6]), by RV .

II-B. Graph Signal Recovery
We aim at recovering (learning) a graph signal x[·] ∈ RV

defined over the data graph G, from observing its values
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{x[i]}i∈M on a (small) sampling set M := {i1, . . . , iM} ⊆
V , where typically M � N .

The recovery of the entire graph signal x[·] from the
incomplete information provided by the signal samples
{x[i]}i∈M is possible under a smoothness assumption,
which is also underlying many supervised machine learn-
ing methods [3]. This smoothness assumption requires the
signal values or labels of data points which are close, with
respect to the data graph topology, to be similar. More
formally, we expect the underlying graph signal x[·] ∈ RV
to have a relatively small total variation (TV) ‖x[·]‖TV :=∑
{i,j}∈EWi,j |x[j]−x[i]|. The total variation of the graph

signal x[·] obtained over a subset S ⊆ E of edges is denoted
‖x[·]‖S :=

∑
{i,j}∈SWi,j |x[j]−x[i]|.

Some well-known examples of smooth graph signals
include low-pass signals in digital signal processing where
time samples at adjacent time instants are strongly correlated
and close-by pixels in images tend to be coloured likely. The
class of graph signals with a small total variation are sparse
in the sense of changing significantly over few edges only.
In particular, if we stack the signal differences x[i] − x[j]
(across the edges {i, j} ∈ E) into a big vector of size |E|,
then this vector is sparse in the ordinary sense of having
only few significantly large entries [7].

In order to recover a signal with small TV ‖x[·]‖TV, from
its signal values {x[i]}i∈M, a natural strategy is

x̂[·]∈arg min
x̃[·]∈RV

‖x̃[·]‖TV s.t. x̃[i]=x[i] for all i∈M. (1)

There exist highly efficient methods for solving convex
optimization problems of the form (1) (cf. [2], [11], [23]
and the references therein).

III. RECOVERY CONDITIONS
The accuracy of any learning method based on solving

(1) depends on the deviations between the solutions x̂[·] of
the optimization problem (1) and the true underlying graph
signal x[·] ∈ RV . In what follows, we introduce the network
nullspace condition as a sufficient condition on the sampling
set and graph topology such that any solution x̂[·] of (1)
accurately resembles an underlying clustered graph signal

x[i] =

|F|∑
l=1

alICl [i] with IC [i] :=

{
1 for i ∈ C
0 else.

(2)

Here, we used a fixed partition F = {C1, . . . , C|F|} of the
entire data graph G into disjoint clusters Cl ⊆ V .

While our analysis applies to an arbitrary partition F ,
our results are most useful for reasonable partitions where
edges within clusters are connected by many edges with
large weight, while nodes of different clusters are loosely
connected by few edges with small weights. Such reasonable
partitions can be obtained by one of the recent highly
scalable clustering methods (cf. [9], [19]). However, we
highlight that the knowledge of the partition is only required

for the analysis of methods based on solving the recovery
problem (1), it is not required for the actual implementation
of those methods, as the recovery problem (1) itself does not
involve the partition.

We will characterize a partition F by its boundary

∂F :={{i, j}∈E : i ∈ Cl, j ∈ Cl′ , with l 6= l′} ⊆ E , (3)

which is the set of edges connecting nodes from different
clusters. We highlight that the recovery problem 1 does not
require knowledge of the partition F . Rather, the partition
F and corresponding signal model (2) is only used for
analyzing the solutions of (1).

Consider a clustered graph signal x[·] ∈ RV of the form
(2). We observe its values x[i] at the sampled nodes i ∈M
only. In order to have any chance for recovering the complete
signal only from the samples {x[i]}i∈M we have to restrict
the nullspace of the sampling set, which we define as

K(M) := {x̃[·] ∈ RV : x̃[i] = 0 for all i ∈M}. (4)

Thus, the nullspace K(M) contains exactly those graph
signals which vanish at all nodes of the sampling set M.
Clearly, we have no chance in recovering any signal x̂[·]
which belongs to the nullspace K(M) as it can not be
distinguished from the all-zero signal x̃[i] = 0, for all
nodes i ∈ V , which result in exactly the same (vanishing)
measurements x̃[i]= x̂[i]=0 for all i∈M ⊆ V .

In order to define the network nullspace property which
characterizes the solutions of the recovery problem (1), we
need the notion of a flow with demands [14].

Definition 1. Given a graph G = (V, E ,W), a flow with
demands g[i] ∈ R, for i ∈ V , is a mapping f [·] : E → R+

satisfying the conservation law∑
j∈N+(i)

f [{i, j}]−
∑

j∈N−(i)

f [{i, j}] = g[i]

at every node i∈V .

For a more detailed discussion of the concept of network
flows, we refer to [14]. In this paper, we will use the flow
concept in order to characterize the connectivity properties
or topology of a data graph G = (V, E ,W) by interpreting
the edge weights Wi,j as capacity constraints that limit the
amount of flow along the edge {i, j}. In particular, using net-
work flows with demands will allow us to adapt the nullspace
property, introduced within the theory of compressed sensing
[8], [10] for sparse signals, to the problem of recovering
smooth graph signals.

Definition 2. Consider a partition F = {C1, . . . , C|F|} of
pairwise disjoint subsets of nodes (clusters) Cl ⊆ V and a
set of sampled nodes M⊆ V . The sampling set M is said
to satisfy the network nullspace property, denoted NNSP-
(M,F), if for any signature σe ∈ {−1, 1}∂F , which assigns
the sign σe to a boundary edge e ∈ ∂F , there is a flow f [e]
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with demands g[i] = 0, for i /∈M, and

f [e]=2σeWe for e∈∂F , f [e]≤We for e∈E \ ∂F .

It turns out that if NNSP-(M,F) is satisfied by the
sampling set M for a partition F , then the nullspace of
the sampling process, i.e., the set of graph signals which
vanish on the sampling set, which is precisely the nullspace
K(M) (cf. (4)), cannot contain a non-zero clustered graph
signal of the form (2).

The formulation of NNSP involves a search over all
signatures, whose number is around 2|∂F|, which might be
intractable for large data graphs. However, similar to many
results in compressed sensing, we expect using probabilistic
models for the data graph to render the verification of NNSP
tractable [10]. In particular, we expect that probabilistic
statements about how likely the NNSP is satisfied for random
data graphs (e.g., conforming to a stochastic block model)
can be obtained easily.

Now we are ready to state our main result, i.e., the network
nullspace condition implies that the solution (1) is unique
and coincides with a true underlying clustered graph signal
of the form (2).

Theorem 3. Consider a clustered graph signal xc[·]∈X (cf.
(2)) which is observed only at the sampling set M ⊆ V . If
NNSP-(M,F) holds, then the solution of (1) is unique and
coincides with xc[·].

Thus, if NNSP-(M,F) holds, we can expect recovery
algorithms based on solving (1), to accurately learn clustered
graph signals x[·] of the form (2).

The scope of Theorem 3 is somewhat limited as it applies
only to graph signals which are precisely of the form (2).
We now state a more general result applying to any graph
signal x[·]∈RV .

Theorem 4. Consider a graph signal x[·] ∈ RV which is
observed only at the sampling set M. If NNSP-(M,F)
holds, any solution x̂ of (1) satisfies (cf. (2))

‖x̂[·]− x̂[·]‖TV ≤ 6 min
al∈R
‖x[·]−

|F|∑
l=1

alICl [·]‖TV (5)

Thus, as long as the underlying graph signal x[·] can be
well approximated by a clustered signal of the form (2), any
solution x̂[·] of (1) is a graph signal which varies significantly
only over the boundary edges ∂F . We highlight that the error
bound (5) only controls the TV (semi-)norm of the error
signal x̂[·]− x[·]. In particular, this bound does not directly
allow to quantify the size of the global mean squared error
(1/N)

∑
i∈V(x̂[i]− x[i])2.

One important use of Theorems 3, 4 is that it guides the
choice for the sampling set M. In particular, for a suitably
chosen partition F and associated signal model (2), one
should aim at sampling nodes such that the NNSP is likely
to be satisfied. This approach has been studied empirically

in [1], [15], verifying accurate recovery by efficient convex
optimization methods using sampling sets satisfying the
NNSP (cf. Definition 2).

IV. NUMERICAL EXPERIMENTS
We now verify the relevance of NNSP for the graph

signal recovery problem using a synthetic data set whose
underlying data graph is a chain graph Gchain. This data
graph contains |V| = 100 nodes which are connected by
|E| = 99 undirected edges {i, i + 1}, for i ∈ {1, . . . , 99}
and partitioned into |F| = 10 equal-size clusters F =
{Cl}l=1,2,...,10, each cluster containing 10 consecutive nodes.
The edges connecting nodes in the same cluster have weight
Wi,j = 4, while those connecting different clusters have
weight Wi,j = 2. For this data graph we generated a
clustered graph signal x[i] of the form with alternating
coefficients al ∈ {1, 5}.

The graph signal x[i] is observed only on the nodes
belonging to a sampling set, which is either M1 or M2.
The sampling set M1 contains exactly one node from each
cluster Cl and thus, as can be verified easily, satisfies the
NNSP (cf. Definition 2). While having the same size asM1,
the sampling set M2 does not contain any node of clusters
C2 and C4.

In Figure 1, we illustrate the recovered signals obtained
for each of the two sampling sets by solving (1) using
the sparse label propagation (SLP) algorithm [11]. The
signal recovered from the sampling set M1, which satisfies
the NNSP, closely resembles the true underlying clustered
graph signal. In contrast, the sampling set M2, which does
not satisfy the NNSP, results in a recovered signal which
significantly deviates from the true signal.

Fig. 1. Clustered graph signal x[i] along with the recovered
signals obtained from sampling sets M1 and M2.

V. CONCLUSIONS
We considered the problem of recovering clustered graph

signals, defined over complex networks, from observing
its signal values on a small set of sampled nodes. By

4551



extending tools from compressed sensing, we derived a
sufficient condition, the network nullspace condition, on
the graph topology and sampling set such that a convex
recovery method is accurate. This condition is based on
the connectivity properties of the underlying network. In
particular, it requires the existence of certain network flows
with the edge weights of the data graph interpreted as
capacities. The network nullspace condition involves both,
the sampling set and the cluster structure of the data graph.
Roughly speaking it requires to sample more densely near
the boundaries between different clusters.

VI. PROOFS
The proofs for Theorem 3 and Theorem 4 rely on

recognizing the recovery problem (1) as an analysis `1-
minimization problem [17]. A sufficient condition for anal-
ysis `1-minimization to deliver the correct solution x[·]
is given by the analysis nullspace property [13], [17]. In
particular, the sampling set M is said to satisfy the stable
analysis nullspace property w.r.t. an edge set S ⊆ E if

‖u[·]‖E\S ≥ 2‖u[·]‖S for any u ∈ K(M). (6)

Lemma 5. Consider a data graph G and fixed partitioning
F = {C1, . . . , C|F|} of its nodes into |F| clusters Cl. We ob-
serve a clustered graph signal x[·] with x[i] =

∑|F|
l=1 alICl [i]

at the sampled nodes M⊆V . If (6) holds for S=∂F , then
(1) has a unique solution given by x[·].

Proof. Consider a graph signal x̂[·], which is different from
the true underlying graph signal x[·], being feasible for (1),
i.e, x̂[i] = x[i] for all sampled nodes i ∈ M. Then, the
difference u[i] := x̂[i] − x[i] belongs to the kernel K(M)
(cf. (4)). Note that, since x[i] is constant for all nodes i ∈ Cl
in the same cluster,

x̂[i]− x̂[j] = u[i]−u[j], for any edge {i, j} ∈ E \∂F . (7)

By the triangle inequality,

‖x̂[·]‖∂F ≥ ‖x[·]‖∂F − ‖u[·]‖∂F = ‖x[·]‖TV−‖u[·]‖∂F ,

and thus, since ‖x̂[·]‖TV = ‖x̂[·]‖∂F + ‖x̂[·]‖E\∂F ,

‖x̂[·]‖TV=‖x̂[·]‖∂F+‖x̂[·]‖E\∂F
(7)
= ‖x̂[·]‖∂F + u[·]‖E\∂F

≥ ‖x[·]‖TV−‖u[·]‖∂F+‖u[·]‖E\∂F
(6)
> ‖x[·]‖TV.

The next result extends Lemma 5 to graph signals x[·] ∈
RV which are not exactly clustered, but which can be well
approximated by a clustered signal of the form (2).

Lemma 6. Consider a data graph G and a fixed partition
F = {C1, . . . , C|F|} of its nodes into disjoint clusters Cl ⊆
V . We observe a graph signal x ∈ RV at the sampling set
M⊆V . If (6) holds for S = ∂F , any solution x̂[·] of (1)
satisfies

‖x[·]−x̂[·]‖TV≤6 min
al∈R

∥∥x[·]− |F|∑
l=1

alICl [·]
∥∥
TV
. (8)

Proof. The argument closely follows the proof of [12, The-
orem 8]. First note that any solution x̂[·] of (1) obeys

‖x̂[·]‖TV ≤ ‖x[·]‖TV, (9)

since x[·] is trivially feasible for (1). From (9), we have

‖x̂[·]‖S+‖x̂[·]‖E\S≤‖x[·]‖S+‖x[·]‖E\S . (10)

Since x̂[·] is feasible for (1), i.e., x̂[i] = x[i] for every
sampled node i ∈M, the difference v[·] := x̂[·]−x[·] belongs
to K(M) (cf. (4)). Applying the triangle inequality to (10),

‖v[·]‖E\S ≤ ‖v[·]‖S + 2‖x[·]‖E\S . (11)

Combining (11) with (6) (for the signal u[·] = v[·]),

‖v[·]‖E\S ≤ 4‖x[·]‖E\S . (12)

Using (6) again,

‖x[·]−x̂[·]‖TV = ‖v[·]‖TV = ‖v[·]‖S+‖v[·]‖E\S
(6)
≤ (3/2)‖v[·]‖E\S

(12)
≤ 6‖x[·]‖E\S .

For any clustered graph signal xc[·] of the form xc[i] =∑|F|
l=1 alICl [i], we have xc[i]−xc[j] = 0 for any {i, j} ∈ E\S

(note that S = ∂F) and, in turn,

‖x[·]+xc[·]‖TV =‖x[·]+xc[·]‖E\S + ‖x[·]+x[·]c‖S
≥ ‖x[·]+x[·]c‖E\S = ‖x[·]‖E\S .

Let us now render Lemma 5 and Lemma 6 for graph
signals x[·] of the form (2) by stating a condition on the
graph topology and sampling set M which ensures (6).

Lemma 7. Any sampling set M satisfying NNSP-(M,F)
necessarily satisfies also condition (6).

Proof. Consider a signal u[·]∈K(M) which vanishes at all
sampled nodes, i.e., u[i] = 0 for all i ∈ M. We will now
show that ‖u[·]‖E\∂F ≥ 2‖u[·]‖∂F .

Let us assume that for each boundary edge e ∈ ∂F , the
flow f [e] in Definition 2 has the same sign as u[e+]−u[e−].
We are allowed to assume this since according to Definition
2, if there exists a flow with f [e] > 0 for some e ∈ ∂F ,
there also exists a flow with f [e] < 0 for the same edge
e ∈ ∂F . Next, we add an extra node s to the data graph
G which is connected to all sampled nodes i ∈ M with an
edge ei = {s, i} which is oriented such that e+i = s. We
assign to each edge ei = {s, i} the flow f [ei] = g[i]. It can
be verified easily that the flow over the augmented graph has
zero demands for all nodes. Thus, we can apply Tellegen’s
theorem [20] to obtain ‖u[·]‖E\∂F ≥ 2‖u[·]‖∂F .

We obtain Theorem 3 by combining Lemma 7 with
Lemma 5. In order to verify Theorem 4 we note that, by
Lemma 7, the NNSP according to Definition 2 implies the
stable nullspace condition (6) for S = ∂F . Therefore, we
can invoke Lemma 6 to reach (5).
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