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ABSTRACT

If the sampled version x(n) = xc(nT ) of a continuous-time
signal xc(t) is periodic, it does not necessarily imply that
xc(t) is periodic. This paper presents some conditions under
which periodicity of xc(t) is indeed implied. The conditions
for this implication are more relaxed than bandlimitedness.
The results place in evidence a multriate method to estimate
the period of xc(t) from the samples x(n). The method works
better than DFT based methods when the available data seg-
ment is short and multiple hidden periods are to be estimated.

Index Terms— Periodicity, multirate sampling, bandlim-
ited signal, Ramanujan sums.

1. INTRODUCTION

Consider the continuous-time signal xc(t) = ej2πt/τ which
is periodic with period τ . From basic courses on signals
and systems we know (e.g., Problem 1.36 in [8]) that the
uniformly sampled version x(n) = xc(nT ) is periodic (i.e.,
x(n) = x(n+P ) for integer P ) if and only if the sample spac-
ing T is such that τ/T is rational. That is, τ/T = p/q where
p and q are integers assumed coprime w.l.o.g. More gener-
ally, for any xc(t) with period τ , one can show that x(n) has
integer period P if and only if τ/T is rational.

In this paper we address a different question: suppose the
uniformly sampled version of some signal xc(t) is found to
be periodic with integer period P . Does it necessarily mean
that xc(t) is periodic? The answer is of course no because
we can easily create counter examples. Thus Fig. 1 shows a
period-3 sequence xc(nT ). If we define xc(t) by filling the
space between samples in an arbitray way as shown, we get
an example of a non-periodic xc(t) whose sampled version
x(n) is periodic.

This raises the following question: under what conditions
does the periodicity of x(n) imply that of xc(t)? Indeed, in
many practical applications involving pitch estimation, one
often estimates the pitch of xc(t) from the periodicity of the
samples x(n). How is this justified? The answer is that we
have to have some apriori knowledge about xc(t). For exam-
ple if xc(t) is assumed bandlimited and the sampling rate 1/T
exceeds Nyquist rate, then periodicity of x(n) does imply that
of xc(t). However bandlimitedness is not necessary; there is
a much larger class (of which bandlimited signals are special
cases), as we shall show in Sec. 2 and Sec. 3. Based on
this we also present a novel method to estimate the period of
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xc(t) from the sampled version x(n). To resolve certain am-
biguities inherent in the method, a multirate approach is then
proposed in Sec. 4. We demonstrate that this works better
than DFT based methods when the available data segment is
short, and closely spaced hidden periods are to be estimated.
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Fig. 1. A continuous-time signal xc(t) and its sampled version
x(n) = xc(nT ). Note that x(n) is periodic with period 3, but xc(t)
is not periodic.

Preliminaries. We say xc(t) is periodic if xc(t + R) =
xc(t) for all t, for some constant R > 0. This R is called a
repetition interval. The smallest positive repetition interval is
the period, denoted as τ . Similar definitions hold for discrete
time signals x(n) but the repetition interval and period are
integers. Clearly xc(t) = xc(t+ kτ) for any integer k so that
kτ is always a repetition interval. Conversely any repetition
interval R is an integer multiple of the period τ . Proof: We
can always write R = kτ + r where 0 ≤ r < τ and k is
an integer. Thus xc(t) = xc(t + R) = xc(t + kτ + r) =
xc(t + r). Since r < τ this contradicts the fact that τ is the
period, unless r = 0, i.e., R = kτ. Similarly in discrete time,
if P is the period of x(n) and R a repetition interval, then
R = kP for integer k.

2. SIGNAL MODELS, SAMPLING, AND
PERIODICITY

Even though periodicity of xc(nT ) does not imply that of
xc(t) in general, if we restrict xc(t) to certain classes, then
periodicity of xc(nT ) will indeed imply that of xc(t). Thus,
consider a continuous-time signal which can be represented
by the model

xc(t) =

∞∑
k=−∞

c(k)φ(t− kT ) (1)

Models with finite innovation rates [27] such as this arise in a
number of contexts: (i) The special case where φ(t) is a sinc
function will correspond to bandlimited signals. (ii) In digital
communcation systems [9], a symbol stream c(n), transmit-
ted with a baseband pulse φ(t) with intersymbol spacing T
(Fig. 2) gives rise to a transmitted waveform as in Eq. (1).
(iii) The above signal model also arises in wavelet theory [2],
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[26], [13], sampling theory [20], [19], and signal interpola-
tion [16], [17], [25]. Observe that (1) implies in particular
that x(n)

∆
=xc(nT ) =

∑∞
k=−∞ c(k)φ(nT − kT ). Defining

Φd(z) =

∞∑
n=−∞

φd(n)z−n (2)

with impulse response φd(n) = φ(nT ) we see that x(n) =∑∞
k=−∞ c(k)φd(n − k), which is a convolution. So, x(n)

can be regarded as the output of the digital filter Φd(z) in
response to input c(n). If the inverse filter 1/Φd(z) is stable,
we can therefore compute c(n) as the output of this filter in
response to the input x(n). See Fig. 3.
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Fig. 2. The functions c(k)φ(t− kT ) for consecutive values of k.
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Fig. 3. (a) The sampled signal x(n) regarded as the output of a
digital filter, and (b) reconstruction of the coefficients c(n) from the
samples x(n).

The beauty of the signal model (1) is that if x(n) has an inte-
ger period P then xc(t) is guaranteed to be periodic:

Theorem 1. Discrete periodicity implies continuous peri-
odicity. Let x(n) = xc(nT ) where xc(t) has the form (1) and
define the digital filter Φd(z) =

∑∞
n=−∞ φd(n)z−n where

φd(n) = φ(nT ). Assume the inverse filter 1/Φd(z) is stable.
Then, if x(n) is periodic-P , it implies that xc(t) is periodic
with period

τ =
PT

Q
(3)

for some integer Q coprime to P. ♦

Proof. Since c(n) is the output of an LTI system in re-
sponse to input x(n) (Fig. 3(b)), it follows that if x(n) has
period P then c(n) = c(n+ P ) as well. So

xc(t) =

∞∑
k=−∞

c(k + P )φ(t− kT )

=

∞∑
k=−∞

c(k)φ(t− kT + PT ) = xc(t+ PT )

Thus xc(t) is periodic, and PT is a repetition interval. So the
period can be written as τ = PT/Q for some integer Q > 0
(see Preliminaries in Sec. 1). It remains to show that P and

Q are coprime. Assume the contrary so that τ = P1T/Q1 for
some integers P1 < P and Q1 < Q. Then

xc((n+ P1)T ) =

∞∑
k=−∞

c(k)φ(nT − kT + P1T )

=

∞∑
k=−∞

c(k)φ(nT − kT +Q1τ)

= xc(nT +Q1τ) = xc(nT ). (4)

So x(n) = x(n+P1) which is a contradiction, since P is the
smallest repetition interval. So P and Q are coprime.555

3. DISCUSSION OF THE RESULT

Theorem 1 shows that the period τ of xc(t) is related to the
integer period P of x(n) by the formula τ = PT/Q. The
only difficulty is that we do not know Q, which can be any
integer coprime to P . If we have the apriori information that
τ > T (period is larger than the sample spacing which is
typical), then Q < P. For example if P = 4 then Q ∈ {1, 3},
whereas if P = 15, then Q ∈ {1, 2, 4, 7, 8, 11, 13, 14}. We
will see later how this Q-ambiguity can be resolved.

For the special case where φ(t) is the sinc function
φsinc(t) = sin(πt/T )/(πt/T ), xc(t) is bandlimited to
|ω| < π/T. According to the sampling theorem [8] all such
signals can be represented as in Eq. (1) where c(k) = xc(kT )
(samples taken at the Nyquist rate). In this case φd(n) =
φsinc(nT ) = δ(n) so Φd(z) = 1. So by Theorem 1, if xc(t)
is bandlimited to |ω| < π/T , and if xc(nT ) has period P ,
then xc(t) has period τ = PT/Q for some integerQ coprime
to P. Since xc(t) is bandlimtied to |ω| < π/T , the funda-
mental frequency 2π/τ < π/T, which shows that τ > 2T,
so that 1 ≤ Q < P/2 in this case. Thus, τ can be identified
with reduced Q-ambiguity. For example if P = 10 then
Q ∈ {1, 3} whereas if P = 9 then Q ∈ {1, 2, 4}.

Theorem 1 holds whether xc(t) is bandlimited or not.
Imagine φ(t) (hence xc(t)) is a high frequency narrowband
signal as in Fig. 4(a). This can be sampled at a low rate
proportional to the bandwidth 2σ to estimate its period. An-
other example is where a signal has missing fundamental, and
contains only a few of high frequency harmonics (Fig. 4(b)).
More generally φ(t) can even be a spline, and so forth.

In the bandlimited case,Xc(jΩ) is a line spectrum with fi-
nite number of lines. So if x(n) is sampled above the Nyquist
rate then X(ejω) is the same line spectrum except for a scal-
ing of the axis. If the line frequencies ofX(ejω) with nonzero
amplitudes are at kiβ and the gcd of the nonzero integers ki
is 1, then β is the fundamental, and η∆

=2π/β is sometimes
regarded as the “period” of x(n) even if it is not an inte-
ger. In such cases, the period of xc(t) is indeed ηT [1]. But
when x(n) has an integer period P , the estimated period of
xc(t) is not necessarily τ = PT. This is because, period-
icity of P does not necessarily imply there is line at 2π/P ,
it only implies there are lines at 2πni/P where the nonzero
ni’s have a gcd g coprime to P. However many authors [28],
[6], [12], [3], [11] essentially assume, explicitly or implicitly,
that τ = PT , although in reality the estimate can only be
claimed to be τ = PT/Q where Q is an unknown integer.
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In problems where the pitch (e.g., of speech) is known to lie
in certain reasonable ranges, the ambiguity Q gets resolved
from this practical knowledge. Also, it is well-known that in-
terpolation of difference function [3] or autocorerlation [28]
is useful to refine integer period estimates. We next show how
we can even resolve the Q-ambiguity through oversampling
or interpolation using knowledge of the signal model alone.
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Fig. 4. (a) Fourier transform of a narrowband bandpass periodic
signal, and (b) periodic signal with missing fundamental, and two
high-frequency harmonics.

4. RESOLVING THE AMBIGUITY IN PERIODICITY

Assume xc(t) not only admits a model of the form (1) where
1/Φd(z) = 1/

∑
n φ(nT )z−n is a stable digital filter, but

furthermore it can also be modeled as

xc(t) =

∞∑
k=−∞

d(k)f(t− kT
L

) (5)

for some integer L. This would be the case, for example,
when xc(t) is bandlimited to |ω| < π/T because it would
then be bandlimited to |ω| < πL/T as well. In this case
φ(t) = sin(πt/T )/(πt/T ) and f(t) = sin(πLt/T )/(πLt/T ).
Fig. 5 demonstrates φ(t − kT ) and f(t − k TL ) for L = 2.
Another situation is where φ(t) is the scaling function arising
in multiresolution theory [5], [2]. In this case {φ(t − kT )}
spans V0 and {φ(2(t− kT/2))} spans V1, and V0 ⊂ V1.
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Fig. 5. (a) The functions c(k)φ(t − kT ) for consecutive values of
k, and (b) the functions d(k)f(t− k T

L
) for consecutive values of k

demonstrated for L = 2.

Define again the digital filter Fd(z) =
∑
n fd(n)z−n with

oversampled impulse response fd(n) = f(nT/L) and as-

sume 1/Fd(z) is stable, so Theorem 1 is applicable to (5) as
well. By applying Theorem 1 to model (1) we conclude that
if x(n)

∆
=xc(nT ) is periodic-P then xc(t) is periodic with pe-

riod τ = PT/Q where P and Q are coprime and Q belongs
to some ambiguity setQ ∈ {Q1, Q2, · · ·QK}. So the densely
sampled version

xL(n)
∆
=xc(nT/L) (6)

is certainly periodic with a repetition interval PL because

xL(n+ PL) = xc((n+ PL)
T

L
)

= xc(n
T

L
+ PT )

= xc(n
T

L
+Qτ) = xc(n

T

L
) = xL(n)

Let PL be the actual period of xL(n). Evidently PL is a divi-
sor of PL (see Preliminaries in Sec. 1). Applying Theorem
1 to the model (5) it follows that if xL(n) is periodic-PL then
xc(t) is periodic with period

τ =
PL
RL

T

L
(7)

where RL is coprime to PL. Thus

τ =
PT

Q
=
PL
RL

T

L
(8)

so that P = QPL/RLL. Choosing the oversampling rate as

L = lcm{Q1, Q2, · · ·QK}, (9)

L/Q becomes an integer. So P = PL/RLJ where J is an
integer. Since P itself is an integer, this is possible only ifRL
is a divisor of PL. But sinceRL is coprime to PL, this implies
that RL = 1. So (8) becomes

τ =
PLT

L
(10)

and the Q-ambiguity has disappeared! Notice finally that the
oversampled version xL(n) can in principle be obtained from
x(n) itself (without having to oversample xc(t) directly) by
computing c(n) using the inverse filter 1/Φd(z) (Fig. 3(b)),
and then using Eq. (1). Summarizing we have proved:

Theorem 2. Unambiguous estimation of periodicity us-
ing multirate sampling. Assume that xc(t) can be modeled
both as (1) and as (5). Define Φd(z) =

∑
n φd(n)z−n, and

Fd(z) =
∑
n fd(n)z−n where φd(n) = φ(nT ) and fd(n) =

f(nT/L) and assume 1/Φd(z) and 1/Fd(z) are stable. Also
define the sampled version x(n) = xc(nT ) and oversampled
version xL(n) = xc(nT/L). If x(n) is periodic-P then the
following are true:

1. xc(t) is periodic-τ where τ = PT/Q, whereQ is some
integer coprime to Q.

2. xL(n) is periodic with some period PL.
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3. Assume Q belongs to some known ambiguity set
Q ∈ {Q1, Q2, · · · , QK}. If the oversampling factor
L is chosen as L = lcm(Q1, Q2, · · · , QK} then the
period of xc(t) can be uniquely determined to be equal
to τ = PLT/L. ♦

As this involves examination of samples at two different rates,
it is a multirate method [18], [4] to estimate the period τ .
The following example demonstrates how this new method
compares with traditional DFT based methods.

An Example. Assume xc(t) is a superposition of signals
xc,i(t) with periods τ1, τ2, · · · , τJ where no τi is an integer
multiple1 of another period τj . We say that τi are hidden peri-
ods. If τi/T are rational the sampled version x(n) = xc(nT )
has hidden integer periods Pi. We can identify τi from Pi us-
ing τi = PiT/Qi where (Qi, Pi) = 1 (Theorem 1). Each Qi
belongs to an ambiguity set {Qi,1, Qi,2, · · · , Qi,Ki

}. By The-
orem 2 we can resolve these ambiguities by using an L-fold
oversampled version by using L = lcm of all the Qi,j’s.

In our example xc(t) is a sum of three continuous-time
signals with periods 4.5, 4.667 and 5.333 secs, the sample
spacing is T = 1 sec, and we assume 100 consecutive sam-
ples x(n) = xc(nT ) are available. Fig. 6(a) shows the 100-
point DFT of x(n). The figure also indicates the quantity
2π/ωi at locations of the peaks. The last two peaks cor-
respond to harmonics of the first two peaks. From the first
two peaks we estimate that there are two periods: 5.2623 and
4.5464. The former approximately represents the correct an-
swer 5.333. But the periods 4.5 and 4.667 cannot be resolved
by conventional DFT methods, as they merge into 4.5464.

Instead of using the DFT, we now use the methods of
this paper. First, we obtain estimates of the hidden integer
periods Pi in x(n) using the dictionary approach [23], [15]
based on Ramanujan-sums [10], [21], [22], [24]. This ap-
proach yields a so-called strength-vs-period plot [22], [15] as
shown in Fig. 6(b). It reveals three integer periods: P1 = 9,
P2 = 14 and P3 = 16 (the other peaks are integer submulti-
ples representing harmonics). By Theorem 1 the integer pe-
riod Pi implies a continuous-time period τi = PiT/Qi where
Qi < Pi and (Pi, Qi) = 1. Thus the Q-ambiguity set for
Q1 is {1, 2, 4, 5, 7, 8}, and similarly for Q2 and Q3. To re-
solve these ambiguities we have to use an oversampling fac-
tor L which is the lcm of integers in all the three ambiguity
sets. This turns out to be huge: L = 360, 360. To avoid such
excessive oversampling, we use the apriori information that,
in this example there is at least one harmonic for each hid-
den period (besides the fundamental). It can be shown that
this meagre knowledge reduces the ambiguity sets to Q1 ∈
{1, 2}, Q2 ∈ {1, 3}, Q3 ∈ {1, 3}. The lcm of these sets is
L = 6. So we use an oversample factor L = 6. Let x6(n)
be this oversampled version of xc(t). It has 600 samples now.
Using the Ramanujan dictionary method [15] we now find the
hidden integer periods in x6(n) to be 27, 28, and 32 (see Fig.
6(c)), from which the hidden periods in xc(t) are found (us-
ing Theorem 2) to be τ1 = 27/6 = 4.5, τ2 = 28/6 = 4.667,
and τ3 = 32/6 = 5.333. The answers are exact. In par-
ticular the closely spaced periods 4.5, 4.667 are resolved per-
fectly in this noise-free case. On the other hand the 600 point
DFT still does not reveal the closely spaced periods (see Fig.

1If τi = nτj for some integer n > 1, then the period of xc,i(t)+xc,j(t)
is just τi. That is, τj merely contributes to the nth harmonic component of
the signal with period τi.

6(d)). If the number of samples available is very large (in
the thousands) then DFT performs well. But with short data
records, the proposed new method works better. Comparison
with well-known multipitch estimation methods [1] will be
presented in future work.

5. CONCLUDING REMARKS

We showed that the signal model (1) implies that xc(t) is pe-
riodic whenever x(n) has an integer period. Since φ(t) need
not be bandlimited, the results are widely applicable. It will
be interesting to find more general models that allow simi-
lar conclusions, opening up other multirate period-estimation
methods.

(a)	


(b)	


(c)	


(d)	


Fig. 6. (a) The 100-point DFT of x(n), (b) the strength-period
plot using Ramanujan dictionaries, (c) the strength-period plot us-
ing Ramanujan dictionaries, for the oversampled signal xL(n) (with
L = 6) and (d) the 600-point DFT of the oversampled signal xL(n).
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