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ABSTRACT

We address sparse approximation in the particular case where
the dictionary is built upon the discretization of a continu-
ous parameter. The resulting dictionary being highly corre-
lated, equivalence between `0 and suboptimal solutions (e.g.
greedy algorithms and convex relaxation) is not guaranteed.
To tackle this issue, continuous parameter estimation has been
proposed using a dictionary based on polar interpolation [1,
2]. Alternately, the exact `0-norm optimization problem can
be addressed on moderate size problems through Mixed Inte-
ger Programming (MIP) [3]. We propose to merge these two
approaches in a new MIP formulation adapted to polar in-
terpolation. Improvements on polar interpolation and refine-
ments on its use in the `1-norm framework are also proposed.
Methods are evaluated on simulated spike train deconvolution
problems, where the proposed `0-norm approach with contin-
uous dictionary achieves the best results, although with higher
computing time.

Index Terms— Sparse approximation, continuous dictio-
nary, `0 norm, polar interpolation, spike train deconvolution.

1. INTRODUCTION

Sparse approximation (SA) of a signal y ∈ RN consists in
solving the problem:

PD : estimate sparse x s.t. y ≈ Hx (1)

where H ∈ RN × RJ is a dictionary of atoms hj (column
vectors), and sparse x means that few xj are non-zero. SA
has received much attention in the past decades, and can be
formulated as a bi-objective optimization problem, where the
reconstruction error ‖y −Hx‖2 and the sparsity level (or `0
“norm” ‖x‖0 = Card{j |xj 6= 0}) are simultaneously min-
imized. As the `0 norm makes this problem combinatorial
and NP-hard [4], many suboptimal approaches have been pro-
posed, e.g., greedy algorithms, which iteratively include new
atoms in the initially-empty solution [5, 6], or the well-known
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convex relaxation [7, 8] with the `1 norm ‖x‖1 =
∑
j |xj |.

The latter leads for example to the penalized problem:

PD2+1(λ) : min
x
‖y −Hx‖2 + λ ‖x‖1 (2)

where the regularization parameter λ controls the trade-off
between sparsity and reconstruction error. Solutions of such
suboptimal approaches are guaranteed to be equivalent to
the `0-norm one under certain conditions (e.g. [9]), barely
summarized with a low sparsity level and low correlation
between atoms. However, these properties are generally not
satisfied for many inverse problems, where the dictionary H,
with atoms hj = h(τj), results from the discretization of
a continuous parameter τ ∈ G = {τ1, . . . , τJ}. Examples
include frequencies for spectral analysis [2, 10] or spike loca-
tions for spike train deconvolution [11, 12]. Indeed, to reduce
model errors caused by discretization of the continuous pa-
rameter, the discretization step must be small, leading to a
highly correlated dictionary and possibly to bad performance
of suboptimal approaches [10, 13].

Two main directions have been proposed to tackle this is-
sue. The first one considers a continuous dictionary {h(τ)}τ ,
so that τ can be estimated continuously. Then, the atomic
norm, the continuous analog of the `1 norm, can be used to
reformulate the problem as a semi-definite program [14, 15].
Alternately, linear approximations of hj(δj) = h(τj+δj) are
proposed in [1, 2] to estimate continuous shift parameters δj ,
with adaptation of classical `1-formulations and greedy algo-
rithms. The second direction considers the exact resolution
of PD in an `0 framework thanks to Mixed Integer Programs
(MIPs), as recently proposed in [3]. Yet the solutions of such
problem necessarily suffer from discretization error.

The present paper aims at merging these two directions
so that the estimation of continuous nonlinear parameters τ
can be performed in the `0 framework. More precisely, we
consider linearization of the continuous dictionary thanks to
the polar interpolation proposed in [1] and we propose a new
constrained MIP formulation to estimate both amplitude and
shift parameters with `0-norm-based sparsity. Additionally,
we bring critical corrections to the polar interpolation in [2]
in the case of real-valued xj , and improvements of the `1-
norm-based estimation method in [2] are brought.
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The paper is organized as follows. Section 2 presents the
polar interpolation for continuous estimation in a general set-
ting, with our corrections in the real-valued case. Then, Sec-
tion 3 describes the adaptation of sparse approximation meth-
ods to continuous dictionaries, both in the `1 and in the pro-
posed `0 framework. Section 4 compares the efficiency of
both approaches on simulated sparse deconvolution problems
and the conclusion in Section 5 closes the paper.

2. POLAR APPROXIMATION FOR CONTINUOUS
DICTIONARIES

2.1. Dictionary with polar interpolation

To avoid the loss of precision caused by the discretization
τj ∈ G, one may consider the following continuous sparse
estimation problem, with hj(δj) = h(τj + δj), τj ∈ G:

PC : estimate (x, δ) s.t. y ≈
∑
j xjhj(δj)

with sparse x and |δj | ≤ ∆
2

, (3)

where ∆ is the sampling step of the grid G. This problem is
more difficult due to the non-linearity of hj in δj . However,
if the discretization grid is fine enough, a linearization proce-
dure of hj(δj) can be considered and classical SA methods
can be adapted. In this perspective, two linearization schemes
were proposed in [1]. While the most intuitive one is a Tay-
lor expansion (hj(δj) ≈ hj(0) + δjh

′
j(0) for example), it

was shown in [1] that a polar interpolation gives better re-
sults for translation-invariant signals. The nonlinear function
hj(·) can then be approximated by:

hj(δj) ≈ cj + r cos(ϕj)uj + r sin(ϕj)vj , ϕj =
2θ
∆
δj (4)

where constants (r, θ) and [cj ,uj ,vj ] are calculated from
the basis elements [hj(−∆

2 ),hj(0),hj(∆
2 )] (see [16] for

analytic expressions |ϕj | ≤ θ. Then, the nonlinear model
xjhj(δj) in problem (3) can be approximated with the linear
one αjcj + βjuj + γjvj with a change of variables from
(xj , δj) to (αj , βj , γj). Denoting by C (resp. U, V) the
matrix with column vectors cj (resp. uj , vj), problem (3)
can be rewritten as:

Estimate (α,β,γ) s.t. y ≈ Cα+ Uβ + Vγ

s.t.


α is sparse
r cos θ ≤ βj/αj ∀j ∈ J1; JK
β2
j + γ2

j = r2α2
j ∀j ∈ J1; JK

. (5)

The equality constraint in (5) expresses that (βj , γj) must be
the cosine and sine of angle ϕj , multiplied by radius r |αj |.
It guarantees a one-to-one mapping between (xj , δj) and
(αj , βj , γj). The inequality constraint in (5) is then equivalent
to the former one |ϕj | ≤ θ. Finally, apart from approximation
errors due to polar interpolation in model (4), the solution of
problem (3) can be obtained by solving (5) with:

xj = αj and δj =
∆
2θ

atan2
(
γj
rαj

,
βj
rαj

)
, (6)

where atan2(y, x) = ϕ ∈ ]−π;π[ with x = R cos(ϕ), y =
R sin(ϕ) and R =

√
x2 + y2.

2.2. Convexification of the feasible set

The resolution of problem (5) in an optimization framework
is difficult, in particular because the feasible set is not con-
vex. This is due to (i) the quadratic equality constraint, and
(ii) the non-linear constraint on βj/αj . For (i), [1] proposed
to replace it with its convex relaxation (i.e. an inequality con-
straint). For (ii), the constraint is linear only if αj is assumed
of known sign as in [1]. Actually, for each j, the variable
space, say Ωj , for (αj , βj , γj) described by constraints in (5)
is the union of two distinct cone surfaces (or cone sections
with the convex relaxation of (i)), one for αj ≥ 0 and the
other for αj ≤ 0. To get a convex feasible set, it is proposed
in [2]1, to replace the search of one signal αjcj+βjuj+γjvj
in the non-convex space Ωj with the search of two signals:
one described by (α+

j , β
+
j , γ

+
j ) in the positive cone portion

Ω+
j , the other by (−α−j ,−β

−
j ,−γ

−
j ) in Ω−j , with positive val-

ues for α+
j and α−j . Our formulation is quite similar to that of

[2], but we correct two critical issues:
• First, we impose only one significant signal in Ωj : at least
α+
j or α−j is zero, to be coherent with problem PC .

• Second, we do not impose any sign for (β+
j , β

−
j , γ

+
j , γ

−
j )

whereas both are assumed to be positive in [2]. Indeed, the
latter assumption forces (βj , γj) to have the same sign than
αj , which restricts the model to shifts δj ≥ 0 (see Eq. (6)).

With the following variable substitutions: ζ̃ = [ζ+T , ζ−T ]T

for ζ = α,β,γ and Z̃ = [Z,−Z] for Z = C,U,V, solv-
ing (5) is then equivalent to :

Estimate (α̃, β̃, γ̃) s.t. y ≈ C̃α̃+ Ũβ̃ + Ṽγ̃

s.t.


α̃ is sparse
α̃j ≥ 0, β̃j ≥ α̃jr cos θ ∀j ∈ J1; 2JK
β̃2
j + γ̃2

j ≤ r2α̃2
j ∀j ∈ J1; 2JK

α+
j · α

−
j = 0 ∀j ∈ J1; JK

. (7)

3. SPARSE SOLUTIONS FOR APPROXIMATE
DICTIONARIES

3.1. Solution for `1 relaxation

The use of the `1 norm was initially proposed by [1, 2] to
address sparse approximation with dictionaries obtained after
polar interpolation. Its adaptation to solve (7) reads:

PC2+1(λ) : mineα,eβ,eγ
∥∥∥y − C̃α̃− Ũβ̃ − Ṽγ̃

∥∥∥2

+ λ ‖α̃‖1

s.t. ∀j ∈ J1; 2JK

{
α̃j ≥ 0, β̃j ≥ α̃jr cos θ

β̃2
j + γ̃2

j ≤ r2α̃2
j

. (8)

1Actually, such a substitution is proposed in the case of complex-valued
variables which can be easily adapted to the real-valued case.
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The constraints α+
j α
−
j = 0 in (8) are not accounted for in this

problem, because they make optimization much more diffi-
cult. On the contrary, the `0-norm formulation based on MIP
proposed in § 3.2 offers a natural framework for such con-
straints. Let us remark, however, that the obtained solution
with `1 penalization always satisfied α+

j α
−
j = 0 in our tests.

3.2. Exact `0 solution with MIP

Recently, the reformulation of the `0-norm problem as a
Mixed Integer Program (MIP) has been proposed [3] (al-
though earlier works can be found, e.g., in [17]). It relies on
introducing binary variables bj , such that bj = 0 ⇔ xj = 0.
Thus, ‖x‖0 =

∑
j bj . If the amplitudes xj are assumed

to be bounded by a given value M , called big-M, the for-
mer equivalence can be written as a set of linear inequality
constraints: −Mbj ≤ xj ≤ Mbj . Therefore, the minimiza-
tion of the approximation error ‖y −Hx‖2 for K0-sparse
solutions can be written as:

PD2/0(K0) :
min
x,b
‖y −Hx‖2 s.t.


b ∈ {0, 1}J

−Mb ≤ x ≤ Mb∑J
j=1 bj ≤ K0

.

(9)

Optimizing both continuous (x) and integer (b) variables,
with a quadratic objective and linear constraints, is a Mixed
Integer Quadratic Program. Even if PD2/0(K0) is still NP-
hard, the MIP resolution benefits from recent progress in
linear and discrete programming, and can be solved exactly
in a reasonable time for small-to-medium sized problem [3].

We propose to solve the continuous sparse estimation
problem (7) in this framework. First, binary variables b+j and
b−j (equivalently b̃j) are introduced to control the sparsity of
α+
j and α−j respectively (equivalently b̃j=0⇔ α̃j=0). Sec-

ond, the constraint that at least one of α+
j or α−j is zero can

be simply written as the linear constraint b+j + b−j ≤ 1. Then,
minimizing the approximation error for K0-sparse solutions
subject to the polar constraints in (7) can be written as the
quadratically-constrained MIP:

PC2/0(K0) : mineα,eβ,eγ,eb
∥∥∥y − C̃α̃− Ũβ̃ − Ṽγ̃

∥∥∥2

s.t.


b̃ ∈ {0, 1}2J 0 ≤ α̃

α̃ ≤ M b̃ α̃r cos θ ≤ β̃∑2J
j=1 b̃j ≤ K0 β̃

2
+ γ̃2 ≤ r2α̃2

and ∀j ∈ J1; JK, b+j + b−j ≤ 1

.

(10)

3.3. Posterior improvements of polar approximation

It is well known that the `1 norm leads to underestimated am-
plitudes x̂ in problem PD2+1(λ) of eq. (2). This bias can be
posteriorly corrected by least-squares estimation of the solu-
tion on the support S={j s.t. x̂j 6=0}:

x̂S = arg minxS ‖y −HSxS‖2 (11)

where subscript S indexes components in S. The problem is
worse in the case of `1 penalization for polar approximation
PC2+1(λ), as the bias in α̃ will produce errors on the estima-
tion of α̃, β̃ and γ̃, and then on estimated amplitudes x and
shifts δ in eq. (6). Therefore, we propose to perform such a
re-estimation step for the continuous dictionary case, on the
solution of PC2+1(λ). Amplitudes (α,β,γ) are re-estimated
on the support S = {j s.t. α̂j 6= 0} of the solution of (8):

minαS ,βS ,γS ‖y −CSαS −USβS −VSγS‖
2

subject to constraints in (8)
, (12)

where CS = [sign(α̂j)cj ]j∈S , US = [sign(α̂j)uj ]j∈S , and
VS = [sign(α̂j)vj ]j∈S , so that we impose the sign of the
reevaluated αS to be the same as the initial solution. Then,
we compute the associated solution (xS , δS) thanks to identi-
fication equations (6). Finally, for bothPC2/0 andPC2+1, a new
dictionary HδS is computed with columns hj(δj), j ∈ S, and
the amplitudes xS are re-estimated in the least squares sense
in a similar way than with eq. (11). It helps to correct the
small amplitude errors due to the polar approximation (4).

4. SIMULATION RESULTS

4.1. Description of signals and statistical tests

We illustrate the previous methods efficiency on simulated
data corresponding to spike train deconvolution problems
arising e.g. in seismic inversion or ultrasonic non-destructive
testing [12, 11, 18]. It can be seen as a classical sparse approx-
imation problem, where data y are modeled as the combina-
tion of K waveforms

∑K
k=1 xk h(t − τk), sampled at times

tn=nTs, with Ts=1, with additional white Gaussian noise ε.
The used waveform is similar to that in [18] and its duration is
37Ts (see Figure 1). Data are simulated in RN=137 withK=4
spikes, their locations τk are drawn uniformly in [0; (J−1)]
with J=100 and their amplitudes xk are drawn with random
sign and uniform absolute value in [0.5;M ], withM=2 (such
M will be used in the MIP formulation (10)). 200 data sets
are simulated for three signal-to-noise ratios (SNR), 10, 20
and 30 dB. The grid is naturally G={0, . . . , J−1}, such that
the interval length ∆ = Ts = 1. Therefore, discrete methods
PD consider τk ∈ G while continuous ones PC enable shifts
δk with |δk| ≤ 1

2 . For fair comparison, we propose to tune
the various sparsity-controlling parameters (λ for `1-norm
problems, K0 for `0-norm problems) on the same basis: they
are tuned to find the sparsest solution such that the squared
residual norm ρ2 is at the noise level: ρ2 ∼ χ2

0σ
2, with σ2

the noise variance and χ2
0 defined such that the probability

that ρ2/σ2 < χ2
0 is 95%.

Optimization is run with IBM ILOG CPLEX V12.6.0 (a
free unlimited version is available to students and academics)
from a Matlab interface on a computer with Intel Xeon E5-
2680 processors (40 threads) with CPUs clocked at 2.8 GHz.
We compare the results with two quality indices:
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Fig. 1. Waveform (top-left), data with SNR=10dB (top-right, noise
ε in gray and signal in black) and estimation results for various SA
methods. Red circles show the true spike locations, blue crosses their
estimated locations. For each method, the residual is plotted in gray
line, and its norm ρ2 and ASD (see text) are given. The bottom panel
shows all estimation results zoomed around the fourth spike.

Waveform Data, ‖ε‖2=3.56

PD2+1, ρ2=3.73, ASD=10.6 PD2/0, ρ2=3.63, ASD=6.51

PC2+1, ρ2=3.2, ASD=3.11 PC2/0, ρ2=3.4, ASD=0.344

True loc. Grid
PD2+1 PD2/0

PC2+1 PC2/0

• ELR: the Exact Location Recovery is a binary index equal
to one only if exactly K = 4 spikes are detected and if all
location errors between the true spikes and the estimated
ones do not exceed ∆/2.

• ASD: the Average Spike Distance (inspired by the one
used in neuroscience [19]) compares the estimated and
true spike trains by computing the quadratic error between
their convolutions with a Laplacian kernel (with standard
deviation ∆/2), therefore accounting for both amplitude
and location estimation. It is less strict than ELR as the
impact of small-valued false detections is reduced.

4.2. Results and analysis

First, a result example for PD2+1, PD2/0, PC2+1 and PC2/0 with
SNR = 10dB is given in Figure 1. Note that three echoes of
the waveform overlap, which makes the estimation problem
difficult. Solutions to PD problems (discrete grid) present
false detections, which compensate for discretization errors
in order to achieve a low residual, and the `1-norm solution
is worse than the `0-norm one. On all data sets, we observed

Table 1. ELR rate (in percent) and ASD (mean and standard devi-
ation in brackets) averaged over 200 tests for PC .
SNR %ELR ASD
(dB) PC∗2+1 PC2+1 PC2/0 PC∗2+1 PC2+1 PC2/0
10 24.5 31 67.5 8.1 (16.6) 6.2 (9.2) 3.6 (7.9)
20 31 39.5 90.5 2.6 (5.2) 1.6 (4.1) 0.8 (4.3)
30 30.5 34.5 88 1.3 (5.1) 0.7 (2.3) 0.05(0.3)

a high number of false detections in almost all PD results,
especially when SNR decreases. One false detection is also
present for the continuous `1-norm solution PC2+1, but this so-
lution achieves lower ASD than discrete methods. Only the
solution of PC2/0 shows an Exact Location Recovery. On this
example, `0-norm solutions give better results and lower ASD
than with `1 relaxation, for both discrete and continuous prob-
lems. Similarly, the polar approximation gives better results
than the use of the discrete dictionary. The bottom panel in
Figure 1 corresponds to a zoom around the fourth spike lo-
cation of the results of each method: discrete estimates with
PD2+1 and PD2/0 give the same grid position and continuous es-
timates PC2+1 and PC2/0 give similar results, closer to the true
location, highlighting the benefits of polar interpolation. Note
that in this example the formulation of [2] would fail to find
a correct location as it would necessary find a positive shift δj
(see § 2.2), while the true one is negative.

The ELR rate and averaged ASD over the 200 data sets
are given in Table 1, for each noise level. We also show the
results given byPC∗2+1, which corresponds toPC2+1 without the
re-estimation step proposed in §3.3. The improvement due to
this step is obvious, both in terms of ELR and ASD. All meth-
ods meet difficulties at low SNR. Best results are obtained
for SNR=20 dB, and get slightly worse in terms of ELR for
SNR=30 dB. This unexpected result may be explained by ap-
proximation errors due to polar interpolation, which cannot be
neglected compared to noise anymore. In any case, the `0 so-
lution shows the best ELR rate (up to 90.5% for SNR=20dB)
and ASD, while the `1 one suffers from a high false detection
rate or erroneous shifts estimation. However, we note that
solving PC2/0 is much more time consuming (average com-
putation time of 400s on 3.5 threads) compared to PC2+1 (2
seconds / 1.8 threads).

5. CONCLUSION

We proposed a new formulation of sparse approximation with
continuous dictionaries based on polar interpolation, allowing
one to estimate the continuous shift parameter in the frame-
work of `0-norm-based sparsity. In our sparse deconvolution
examples, it achieved the best solutions both in terms of loca-
tion recovery and spike reconstruction, compared to classical
discrete `1- and `0-norm or continuous `1-norm approaches.
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