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ABSTRACT

In non-linear autoregressive models, the time dependency
of coefficients is often driven by a particular time-series which
is not given and thus has to be estimated from the data. To
allow model evaluation on a validation set, we describe a
parametric approach for such driver estimation. After esti-
mating the driver as a weighted sum of potential drivers, we
use it in a non-linear autoregressive model with a polyno-
mial parametrization. Using gradient descent, we optimize
the linear filter extracting the driver, outperforming a typical
grid-search on predefined filters.

Index Terms— non-linear autoregressive models, spec-
trum estimation, electrophysiology, cross-frequency coupling

1. INTRODUCTION

Autoregressive (AR) models are stochastic signal models
which have been used for spectral estimation in a wide variety
of fields, including geophysics, radio astronomy, speech pro-
cessing, or neuroscience [1]. Since AR models are linear and
stationary, they assume signal statistics to be constant over
time, which is not sufficient in many applications.

To overcome this limitation, a large variety of non-linear
AR models have been proposed, especially in audio signal
processing and econometrics, to model fluctuations in mean,
spectrum, or energy in the signal. The seminal work of Tong
and Lim [2] introduced the threshold AR (TAR) model, where
a driving time series x acts as a switching mechanism between
several AR models applied on the signal y. Several extensions
have been developed to get a smoother transition between
regimes, like exponential AR (EAR) [3] or smooth transition
AR (STAR) [4] models.

Concerning the driver x, some models consider it to be
hidden, assuming for instance a Markov chain structure [5].
Such probabilistic inference is computationally intensive and
cannot be evaluated on a validation set. In other models, a
parametric approach enables model evaluation on a validation
set, which makes model comparison easy. For instance, the
driver can be a function of the signal y itself, as in self-exciting
TAR (SETAR) [2, 6] model. A typical choice is x(t) = y(t−d)
with a delay d > 0. The driver can also be optimized as a
weighted average of several potential drivers [7, 8], before

being used in a deterministic [7] or a probabilistic [8] TAR
model. The set of potential drivers can also be used directly to
linearly parametrize the AR coefficients [9, 10, 11].

Our work builds upon driven AR (DAR) models [12],
which have been used in particular to estimate cross-frequency
coupling (CFC) in neural time-series [13]. In a word, CFC is
an inter-frequency coupling phenomenon observed in electro-
physiology signals, that is believed to play a central role in
functional interactions between neural ensembles [14].

DAR models use a polynomial parametrization over a sin-
gle driver, which gives a continuous transition between regimes
while allowing fast model estimation. The single driver is also
essential for interpretability. A limitation of DAR models is
the assumption that the driver is given. In practice, the driver is
obtained by filtering an exogenous time-series, which requires
to search for filter parameters over a grid of values [13].

To soften this known-driver assumption, one could poten-
tially add more drivers directly into DAR models, but that
would lead to a very large number of degrees of freedom. Esti-
mation would have high variance, making the risk of model
overfit high. We would also lose the interpretability of the
single driver, which is key in neuroscience applications.

Instead, we propose to build a weighted average of poten-
tial drivers as in [7, 8], and to use it as a single driver in the
polynomial parametrization of DAR models [12]. The opti-
mization is thus separated into two steps: optimizing the driver,
and optimizing the DAR model. For the former, we propose
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Fig. 1. Driven power spectral density of a DAR model fitted
on electrophysiology data. The driver’s phase is synchronized
with a strong amplitude fluctuation around 80 Hz. This phe-
nomenon is known as cross-frequency coupling (CFC).
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a fast optimization scheme based on quasi-Newton L-BFGS
algorithm [15]. For the latter, we refer the reader to [13].

This paper is organized as follows. First we present the
necessary background on DAR. Then we describe the driver
decomposition and the proposed gradient descent optimization
scheme. Finally we present an extensive validation on both
simulations and electrophysiology signals.

2. DRIVEN AUTOREGRESSIVE MODELS

Let y be a univariate locally stationary signal, as defined
in [16]. An autoregressive (AR) model states that y depends
linearly on its own p past values, where p is the order of the
model:

y(t) +

p∑
i=1

aiy(t− i) = ε(t) (1)

for all t ∈ [p+ 1, T ], where T is the length of the signal, and ε
is the innovation (or residual) modeled with a Gaussian white
noise: ε(t) ∼ N (0, σ(t)

2
).

To extend this AR model to a non-linear model, one can
assume that the AR coefficients ai are non-linear functions
of a given exogenous signal x, here called the driver. As
proposed in [12], we consider these non-linear functions to be
polynomials:

ai(t) =

m∑
k=0

aik x(t)k (2)

This parametrization allows the instantaneous AR model
to smoothly change between different regimes, following the
fluctuations of the driver x.

However, since the model is based only on the driver’s
value, it does not disentangle the ascending phase from the
descending phase of the driver. To fix this issue and obtain
phase invariance, the parametrization can be improved using a
complex-valued driver x = xre+ jxim [13]. The parametriza-
tion is now:

ai(t) =
∑

0≤k+l≤m

aikl xre(t)
kxim(t)l = A>i X(t) (3)

where Ai, X(t) ∈ Rm̃ and m̃ = (m+ 1)(m+ 2)/2.
To improve stability of the estimation, we ortho-normalize

the basis {xkrexlim}0≤k+l≤m, which changes (3) into:

ai(t) = A>i GX(t) (4)

with G ∈ R(m̃,m̃) such that (GX(t))t∈Θ is composed of or-
thogonal and unit-norm vectors. We use Gram-Schmidt pro-
cess to build G.

To allow general power fluctuation over the entire spec-
trum, the innovation variance is also parametrized by the

driver:

log(σ(t)) =
∑

0≤k+l≤m

bkl xre(t)
kxim(t)lk = B>X(t) (5)

This model is called a driven AR (DAR) model [13]. A dif-
ferent parametrization can be found in [17], which guarantees
stability of the instantaneous AR models. Model parameters
(A0, ..., Ap, B) are estimated by maximizing the model likeli-
hood, and inference is very fast. See [13] for more details.

3. DRIVER ESTIMATION

3.1. Driver decomposition

In DAR models, the driver x is assumed to be known, but it
might not be the case in practice. To have a weaker assumption,
we assume here that the driver can be decomposed into a finite
set of signals, as in [7, 8]:

x(t) =

N∑
n=1

αnxn(t) (6)

This set of potential drivers can be, for instance, a Fourier basis
xn(t) = exp(j2πnt), or a Gabor dictionary [18]. Another
choice is to use a set of delayed signals xn(t) = z(t−n) with
−M ≤ n ≤ M . In this case, the coefficients αn define a
linear filter applied on z. We used this set in our experiments.

Importantly, we do not use this set of drivers xn to linearly
parametrized AR coefficients as in [9, 10, 11]. Instead, we
use the weighted sum x in a DAR model, i.e. in polynomial
expressions for AR coefficients and innovation variance.

3.2. Model likelihood

We estimate the optimal weights αn by maximizing the likeli-
hood L of the model:

L =

T∏
t=p+1

1√
2πσ(t)

2
exp

(
− ε(t)

2

2σ(t)
2

)
(7)

−2 log(L) = T log(2π) +

T∑
t=p+1

ε(t)
2

σ(t)
2 + 2

T∑
t=p+1

log(σ(t))

Using an alternating optimization approach, we optimize DAR
model parameters (A0, ..., Ap, B) while keeping the driver
fixed, and optimizing the driver weights αn while keeping the
DAR model fixed. As this problem is non-convex, weights
initialization is key to find good local minima. Optimizing
the driver weights can be done with various optimization al-
gorithms. Here, we choose the quasi-Newton L-BFGS algo-
rithm [15], which only requires to compute gradients.
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Fig. 2. Negative log-likelihood of DAR models fitted with dif-
ferent drivers (lower is better) and evaluated on a validation set.
(Left) Grid search: The drivers were bandpass filtered at center
frequency fx with a bandwidth ∆fx. (Right) Gradient descent:
The filters extracting the drivers were optimized by gradient
descent, using either several bandpass filter initializations or
some random initializations. All bandpass filter initializations
with center frequency ranging from 2 Hz to 8 Hz gave optimal
and comparable likelihoods. Filter order (495, 247, 123, 61)
respectively correspond to bandwidths (0.8, 1.6, 3.2, 6.4) Hz.

3.3. Gradient of the log-likehood

The gradient with respect to the weights reads:

∂ logL

∂αn
= −

∑
t∈Θ

(
ε(t)

σ(t)2

∂ε(t)

∂αn
+ (1− ε(t)2

σ(t)2
)
∂ log σ(t)

∂αn

)
where Θ = [p+ 1, T ] in the general case. In our experiments,
we restricted the sum to Θ = [max(p + 1,M), T −M ] to
avoid filtering issue at the edges. In particular, when multiple
values of M are compared, we need to restrict the comparison
to Θ = [max(p+ 1,Mmax), T −Mmax].

The partial derivatives read:

∂ε(t)

∂αn
= xre,n(t)

∂ε(t)

∂xre
+ xim,n(t)

∂ε(t)

∂xim
(8)

∂ log σ(t)

∂αn
= xre,n(t)

∂ log σ(t)

∂xre
+ xim,n(t)

∂ log σ(t)

∂xim
(9)

Let’s note x when an expression is similar for both xre and
xim. From equations (1), (3), and (5), we obtain:

∂ε(t)

∂x
=

p∑
i=1

A>i G
∂X(t)

∂x
y(t− i) (10)

∂ log σ(t)

∂x
= B>

∂X(t)

∂x
(11)

Finally, we can rewrite:

∂ logL

∂αn
=−

∑
t∈Θ

(xre,n(t)gre(t) + xim,n(t)gim(t)) (12)

with

g (t) =

(
ε(t)

σ(t)2

∂ε(t)

∂x
+ (1− ε(t)2

σ(t)2
)
∂ log σ(t)

∂x

)
(13)
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Fig. 3. Comparison of 4 models: 3 DAR fitted with different
drivers, and 1 linear AR for reference. Both gradient descent
and grid search strategies give comparable results, which are
much better than when using the driver on the entire band
[0, 20] Hz. (Left) Negative log-likelihood on a validation set
(lower is better). (Right) Power spectral density of the best
driver for each strategy.

Computing the gradient involves O(Tpm̃) operations to
compute g , and O(TN) operations to compute the gradi-
ent in (12). In the special case x ,n(t) = z (t − n), we can
rewrite (12) into a convolution, which can be performed in
O(T log(T )) using the fast Fourier transform.

3.4. Adding a symmetry constraint

In the special case xn(t) = z(t− n), if we want to make sure
the filter is zero-phase, we just need to make the filter symmet-
ric. We rewrite the driver as x = α0x0+

∑M
n=1 αn(xn+x−n),

where N = 2M + 1. The gradient is simply updated into
∂x
∂αn

= xn + x−n if n > 0 and ∂x
∂αn

= x0 if n = 0.

4. RESULTS

4.1. Simulations

We created simulated signals with artificial coupling between a
driver and a sinusoid. The signals are sampled at fs = 240 Hz,
and have a length T = 105.

We first created a driver x by filtering a Gaussian white
noise with a filter w(t) = b(t) exp(2jπfxt), where b is a
Blackman window of order 2b1.65fs/∆fxc + 1, chosen to
have a bandwidth of ∆fx at −3 dB.

This driver x was then used to modulate the amplitude of
a sinusoid y(t) = s(xre(t)) sin(2πfyt) where s is a sigmoid
function. The modulated sinusoid and the driver were summed
up, along with some noise. The noise was pink with a fre-
quency slope f−2 above 3 Hz and a plateau below 3 Hz, to
mimic electrophysiology signals. The amplitude of the three
signals were chosen to have a signal-to-noise ratio (SNR) of
5 dB at fx and of 20 dB at fy. Importantly, we do not use a
DAR model to simulate such data.

We compared different choices of driver, using DAR mod-
els of order (p,m) = (10, 2), and comparing their negative
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Fig. 4. Same as Fig. 2, but using a bimodal driver at 5 and
14 Hz. The gradient descent strategy gave better results than
grid-search, when the initial filter was not too poor.

log-likelihood on a validation set using cross-validation. We
split the signal into 10 parts of equal size, fitted a DAR model
on 5 random parts, and estimating the negative log-likelihood
on the 5 other parts, and repeating this process 10 times. To
fit the models, we first separated the low frequencies from the
high frequencies using a low-pass filter at 20 Hz, which gave
z and y respectively. We extracted the driver x from z using
different strategies described below, and fitted DAR models
on signal y with driver x.

The first strategy was grid-search, which searched over a
set of bandpass filters as described above. The second strategy
used the proposed gradient descent to optimize freely the filter
extracting the driver. In this strategy, we used different initial-
izations, since the problem is non-convex and thus may lead
to different local minima. Initial filters where either bandpass
filters as in the first strategy with center frequency ranging
from 2 Hz to 8 Hz, or random filters generated with Gaussian
white noise. We also compared with the entire low-pass filter
z, and with a linear AR which uses no driver.

The first simulation used a single-band (fx,∆fx) = (5, 3)
ground-truth driver, and results are presented in Fig. 2 and
3. Both strategies gave the same best results. We also ob-
served that gradient descent converged to about the same log-
likelihood for a large set of reasonable initializations. However,
if the initialization does not capture CFC, the optimization
leads to poorer results (yet better than the linear AR, even on
the validation set).
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Fig. 5. Same as Fig. 3, using electrophysiology data. Gradient
descent strategy leads to better results than grid-search.
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Fig. 6. Same as Fig. 3, but using a bimodal driver. With a
more complex spectral structure, the gradient descent strategy
gives much better results than the grid search one, which is
limited to single mode bandpass filters.

The second simulation used a bimodal ground-truth driver,
built as the sum of two drivers x = x1 + 0.4x2, filtered respec-
tively with (fx1 ,∆fx1) = (5, 3) and (fx2 ,∆fx2) = (14, 3).
Results are presented in Fig. 4 and 6. In this case, the grid-
search strategy could not correctly capture the two bands,
and chose a large filter centered at 10 Hz. It performed only
marginally better than the full low-pass signal z. In contrast,
the optimization by gradient descent correctly captured the
two bands, leading to much better results.

4.2. Empirical data

We also validated our approach on empirical electrophysiology
data containing CFC. The signal is an electro-corticogram
(ECoG) channel, recorded on human auditory cortex [19]. It
lasts 730 seconds and is sampled at 333.8 Hz. The results
presented in Fig. 5 show that the gradient descent strategy
leads to a lower negative log-likelihood than the grid-search
strategy. In this case, the difference could be related to an
asymmetrical shape of the driver spectral peak at 4 Hz.

5. CONCLUSION

In this work, we describe how to estimate the driving signal in
non-linear time-dependent autoregressive models. By decom-
posing the driver as a weighted average of potential drivers,
we are able to optimize the weights by gradient descent. As a
special case, we infer the linear filter to apply to an exogenous
signal in order to obtain the driver, and demonstrate the good
performance of such driver on both simulated and empirical
data, using cross-validation.
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