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ABSTRACT

Multifractal analysis, notably with its recent wavelet-leader based
formulation, has nowadays become a reference tool to characterize
scale-free temporal dynamics in time series. It proved successful in
numerous applications very diverse in nature. However, such suc-
cesses remained restricted to univariate analysis while many recent
applications call for the joint analysis of several components. Sur-
prisingly, multivariate multifractal analysis remained mostly over-
looked. The present contribution aims at defining a wavelet-leader
based framework for multivariate multifractal analysis and at study-
ing its properties and estimation performance. To better understand
what properties of multivariate data are actually captured in mul-
tivariate multifractal analysis, a multivariate multifractal model is
used as representative paradigm and permits to show that multivari-
ate multifractal analysis puts in evidence transient and local depen-
dencies that are not well quantified or even evidenced by the classical
Pearson correlation coefficient.

Index Terms— multivariate multifractal analysis, wavelet lead-
ers, transient higher order dependencies

1. INTRODUCTION

Multifractal analysis: successes and limitations. Multifractal
analysis provides practitioners with a robust, rich and efficient
means for the assessment of scale-free temporal dynamics in real-
world data (cf., e.g., [1–3]). The scale-free concept postulates that a
large continuum of scales, rather than a small set of specific scales,
all contribute to temporal dynamics. It has permitted significant
contributions and successful analyses of numerous real-world ap-
plications very different in nature (cf., e.g., [4–11]). However and
surprisingly, despite the fact that in many recent applications several
time series are collected that need to be analyzed jointly, multifractal
analysis remained univariate in essence, that is, even when several
time series are jointly available, their analysis is conducted indepen-
dently on each single one (see a contrario a few notable exceptions
in, e.g., [12, 13]). Modern applications thus call for a multivariate
multifractal analysis framework.
Related works. Multifractal analysis was historically (in the 90s)
practically constructed on the increments of data. It was later shown
that wavelet frameworks, involving non-linear non-local transforms
of wavelets coefficients, permitted theoretically better grounded and
practically more robust and efficient assessment. This gave birth
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to multifractal formalisms such as the Wavelet Transform Modulus
Maxima [14], or wavelet-leader [3] and p-leader [15] formalisms.
These state-of-the-art formalisms yet remain univariate, thus can
only be applied to one single time series at a time, and multivariate
multifractal analysis has been largely overlooked. One notable early
exception is [12], but it remained based on increments and used the
context of hydrodynamic turbulence and has never been extended to
the wavelet-leader framework. Accordingly, multifractal reference
models, such as random cascades [9] or multifractal random walk
(MRW) [16], mostly consist of univariate processes, except for rare
attempts (cf. [12] or the unpublished work in [17]). These multi-
variate models were barely used in applications because of the lack
of practical tools actually permitting their multivariate multifractal
analysis. Therefore, and surprisingly despite its massive successes
in applications, multifractal analysis remains in its infancy as far as
multivariate extensions are concerned.
Goals, contributions and outlines. The present contribution aims
to present and discuss the principles of multivariate multifractal
analysis. Because the goal is to focus on intuitions beyond multi-
variate multifractal analysis rather than on technicalities, the current
presentation is restricted to a bivariate setting and to wavelet leaders.
Bivariate multifractal analysis and the corresponding wavelet leader
formalisms are defined and studied in Section 2. The definitions and
properties of bivariate MRW are recalled in Section 3. The prac-
tical estimation performance for multifractal parameters achieved
by the proposed wavelet leader bivariate multifractal formalism
are assessed from Monte Carlo simulations conducted on bivariate
MRW (cf. Section 4). Further, to build an intuitive understanding of
what is captured in the bivariate multifractal spectrum, we construct
bivariate MRW with zero Pearson correlation amongst components
and yet rich bivariate multifractal spectra, hence quantifying local or
transient dependencies beyond second order statistics.

2. BIVARIATE MULTIFRACTAL ANALYSIS

2.1. Bivariate mutifractal spectrum

Hölder regularity. In essence, multifractal analysis amounts to
characterizing the fluctuations along time of the local regularity of
a signal or function X(t) [2]. Local regularity is usually defined via
the so-called Hölder exponent, h(t) > 0, defined as follows. X is
said to belong to Cα(t) at time position t ∈ R, with α ≥ 0, if there
exist a constantC > 0 and a polynomial Pt satisfying Deg(Pt) < α
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such that, in a neighborhood of t

|X(t+ a)− Pt(t+ a)| ≤ C|a|α, |a| → 0. (1)

The Hölder exponent of X at t is defined as the largest such α,

h(t) = sup{α : X ∈ Cα(t)} ≥ 0. (2)

The closer h(t) to 0, the more irregular X is around t.
Multifractal spectrum. Though deeply tied to local regularity and
Hölder exponent, multifractal analysis does not aim to output a local
information h(t), but rather a global and geometrical characteriza-
tion of the local regularity fluctuations, referred to as the multifractal
spectrum. For a bivariate signal X = (X1, X2), let (h1(t), h2(t))
denote the Hölder exponents, characterizing each component at time
t. The multifractal spectrum D(h1, h2) is defined as the collection
of Hausdorff dimensions of the sets of points t on the real line, where
(h1(t), h2(t)) takes the values (h1, h2) [12, 18]. The locations hm1
and hm2 where D(h1, h2) takes its maximum define the global (or
average) regularity of each components. The shape, the widths and
orientation in the (h1, h2) plane notably provide information regard-
ing the richness of the joint fluctuations of local regularity in X, cf.,
Section 4.

2.2. Bivariate mutifractal formalism

Wavelet Leaders. It is well-known that in univariate settings the
practical estimation of the multifractal spectrum from real world data
requires the use of a multifractal formalism, a procedure inspired
from thermodynamics (cf., e.g., [2]). It has recently been proposed
and shown that state-of-the-art versions of the procedure should be
based on wavelet leaders [2, 3].

Let ψ denote the mother wavelet, characterized by its uniform
regularity index and number of vanishing moments Nψ , a posi-
tive integer defined as ψ ∈ CNψ−1 and ∀n = 0, . . . , Nψ − 1,∫
R t
kψ(t)dt ≡ 0 and

∫
R t
Nψψ(t)dt 6= 0. Let {ψj,k(t) =

2−j/2ψ(2−jt − k)}(j,k)∈Z2 denote the collection of dilated and
translated templates of ψ that form an orthonormal basis of L2(R)
[19]. The (L1-normalized) discrete wavelet transform coefficients
dX(j, k) of X are defined as dX(j, k) = 2−j/2〈ψj,k|X〉.

The wavelet leaders are further constructed as local suprema of
wavelet coefficients, taken over finer scales and within a short tem-
poral neighborhood 3λj,k, with λj,k = [k2j , (k + 1)2j) the dyadic
interval of size 2j and 3λj,k the union of λj,k with its 2 neigh-
bors [3], L(j, k) = supλ′⊂3λj,k

|dX(λ′)|.
Legendre transform. The LX(j, k) are well suited to Hölder
exponent characterization because for t = 2jk, LX(j, k) ∼
C2jh(t) as 2j → 0. This implies that, for 2j → 0

1

nj

nj∑
k=1

LX1(j, k)q1LX2(j, k)q2 ∼ cq2jζ(q1,q2) (3)

where the so-called scaling exponents ζ(q) relate to D(h) as fol-
lows, with h = (h1, h2) and q = (q1, q2): For a large class of pro-
cesses, it can be shown that the bivariate Legendre transform of ζ(q)
yields an (upper-bound) estimate of the multifractal spectrum [18]

L(h) = inf
q

(1 + 〈q,h〉 − ζ(q)) ≥ D(h). (4)

Cumulants. Further elaborating on the univariate formalism [20],
it can be shown that for many standard classes of multifractal
processes with scaling exponents ζ(q), the bivariate cumulants

Cp1p2(j) of order p1 + p2 ≥ 1 of the vector of log-leaders
(lnLX1(j, k), lnLX2(j, k)) at scale 2j take the form

Cp1p2(j) = c0p1p2 + cp1p2 ln 2j . (5)

The coefficients cp1p2 are related to the ζ(q1, q2) as

ζ(q1, q2) =
∑

p1,p2≥0: p1+p2≥1

cp1p2q
p1
1 qp22 /(p1! p2!). (6)

Taking the Legendre transform of (6) yields that c10 = hm1 and
c01 = hm2 , while c20 and c02 quantify the widths of the fluctu-
ations independently for each component, and c11 constitutes the
leading order quantity conveying joint information for the fluctua-
tions of regularity for both components. Further intuitions will be
constructed in Section 4.

3. BIVARIATE MULTIFRACTAL RANDOM WALK

Univariate multifractal reference models. The historical and most
popular multifractal processes, used as reference models, are the cel-
ebrated Mandelbrot cascades [9]. They consist of split/multiply it-
erative constructions that induce multifractal properties [9]. Multi-
variate extensions of cascades were however barely considered and
used (see a contrario [12]). Alternatively, MRWs were constructed
as more realistic models for real world data [16], notably with signed
increments. The construction of MRW can be understood as a de-
viation from fractional Gaussian noise (fGn), the increment process
of fractional Brownian motion that constitutes the reference Gaus-
sian self-similar process [21], in which the departure from Gaus-
sianity is achieved by modulating the variance using an independent
stochastic process whose statistical properties mimic those of Man-
delbrot cascades, hence inducing multifractal properties [16]. Its
multivariate extension has not been considered except in the unpub-
lished work [17]. We elaborate on the construction of a bivariate
MRW to illustrate the nature of the information captured in the bi-
variate multifractal spectrum.
Bivariate multifractal random walk (b-MRW): Definition. The
construction of a b-MRW requires two pairs of stochastic processes.
First, a pair of fGnG1(t), G2(t) is constructed, which is determined
by two potentially different self-similar parameters H1 and H2, re-
spectively, and a point covariance matrix Σss. The corresponding
correlation coefficient is referred to as ρss. These processes can
be constructed as a specific case of the general multivariate self-
similarity framework referred to as Operator Fractional Brownian
Motion [22] and numerically synthesized as detailed in [23].

Second, a pair of Gaussian processes ω1(t), ω2(t) with pre-
scribed covariance function Σmf , with entries {Σmf}ij(k, l) =
Eωi(k)ωj(l)− Eωi(k)Eωj(l) given by

{Σmf}ij(k, l) = ρmf (i, j)λiλj log

(
T

|k − l|+ 1

)
, i = 1, 2

(7)
for |k − l| ≤ T − 1 and 0 otherwise, with T an arbitrary integral
scale, taken to be equal to the data sample size for the remainder of
the paper. To simplify notations, we set ρmf (i, i) ≡ 1, i = 1, 2, and
we write ρmf (1, 2) ≡ ρmf below. The logarithmic decrease of the
covariance in (7) is chosen to induce multifractal properties in the
resulting process. Both pairs of Gaussian correlated processes are
numerically synthesized using the toolbox described in [23].

Finally, each component i = 1, 2 of b-MRW is defined as

Xi(t) =

t∑
k=1

Gi(k)eωi(k).
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ĉ10

ρmf

-1 -0.5 0 0.5 1
0.815

0.82

0.825

0.83

0.835

0.84
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Fig. 1. Estimates for univariate parameters c10, c01, c20, c02, for
ρss = 0, as a function of multifractal correlation ρmf : average (red
circles), standard deviations (errorbars) and theoretical values (blue
dashed lines).

Bivariate multifractal random walk (b-MRW): Properties. The
Pearson correlation ρbMRW of the increments of the components of
b-MRW obviously results from both the correlations ρss and ρmf of
the self-similar and multifractal components entering its construc-
tion, respectively. Tedious calculations not reported here actually
show that ρbMRW = ρss ·f(ρmf , λ1, λ2), with f a non linear func-
tion which will be made explicit in a future work.

Elaborating on the form of the multifractal properties established
for univariate MRW, ζ(q) = (H + λ2/2)q − λ2q2/2 and D(h) =
1 − (h − (H + λ2/2))2/(2λ2), and following [17], it can fur-
ther be conjectured that the bivariate scaling exponents of b-MRW
take the form proposed in (6), with cp1p2 ≡ 0, ∀(p1, p2) such that
p1 + p2 ≥ 3 and c10 = H1 +λ2

1/2, c01 = H2 +λ2
2/2, c20 = −λ2

1,
c02 = −λ2

2, and c11 = −ρmfλ1λ2. Note that the value of the bi-
variate parameter c11 does not depend on ρss. The analytic form for
the bivariate multifractal spectrum of b-MRW has not been studied
except for trivial cases, yet its Legendre spectrum is given by (4).

4. NUMERICAL RESULTS

4.1. Parameter setting and estimation procedure

Parameter setting. Estimation performance and understanding
of the intuitions beyond the bivariate multifractal spectrum are ob-
tained by Monte Carlo simulations, conducted over 100 independent
copies of b-MRW of sample size n = 218 with process parameters
(H1, H2) = (0.6, 0.8), (c20, c02) = (−0.02,−0.04) and various
values for ρss and ρmf . Wavelet analysis is performed using a
Daubechies least asymmetric wavelet, with Nψ = 3 vanishing mo-
ments.
Estimation procedures. Wavelet leaders, linear regressions in (3)
and (5), and bivariate Legendre transform were implemented by our-
selves in what, we believe, constitutes the first bivariate multifractal
analysis toolbox.

4.2. Multifractal estimation performance

Univariate parameters. Fig. 1 reports the estimation performance
for the univariate multifractal parameters c10, c01, c20, c02 as a func-
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Fig. 2. Estimates for bivariate parameters c11 (left column) and ρmf
(right column) as a function of multifractal correlation ρmf . Top
row: averages (red circles) and standard deviations (error bars) and
theoretical values (blue dashed lines) for ĉ11 and ρ̂mf for ρss = 0.5.
Bottom row: root-mean-squared-error values for ρss ∈ {0, 0.5, 0.9}
(blue circles, red crosses, black squares, respectively).

tion of ρmf , for a fixed value ρss = 0. It shows that estimation per-
formance does not depend on the actual value of ρmf . Similar plots,
not show here for space reasons, show that estimation performance is
also independent of ρss. This indicates that, as expected, estimation
performance for univariate multifractal parameters is not impacted
by the point dependence structure of the bivariate multivariate pro-
cess. For further results on univariate parameters as a function of
parameter value, see, e.g., [3].
Bivariate parameters. To investigate the estimation performance
for the parameters related to the bivariate dependence structure, let
us now turn to ĉ11. Moreover, we propose to study the following nat-
ural estimator for the multifractal correlation ρmf , cf. (7), defined
as

ρ̂mf = −ĉ11/
√
|ĉ20ĉ02|,

where the absolute values are introduced to prevent from negative
values under the square root, spuriously induced due to the estima-
tion variability for small values of c20 and c02. Fig. 2 (top row)
shows averages and standard deviations of ĉ11 and ρ̂mf as functions
of ρmf (for ρss = 0.5) and indicates that estimates closely repro-
duce the theoretical values c11 and ρmf and are very satisfactory.
Fig. 2 (bottom row) further studies root-mean-squared-error (rms)
values for ĉ11 and ρ̂mf as a function of ρmf , for several values of
ρss. It leads to conclude that the estimation performance does not
depend on ρss, except for a drop in variance observed for ρ̂mf for
large values of ρss and ρmf . Overall, these results indicate that the
proposed procedure yields relevant and robust estimates for the bi-
variate parameters c11 and ρmf , with estimation performance largely
independent of ρss and ρmf .

4.3. Intuitions beyond bivariate multifractal spectra

The Pearson correlation coefficient is a classical tool to assess de-
pendence amongst data components. Here we illustrate that the pro-
posed bivariate multifractal framework permits to model and analyse
dependence beyond the correlation coefficient. Specifically, we de-
sign b-MRW with Pearson correlation ρbMRW = 0, which is easily
achieved by setting ρss = 0, and vary the value for ρmf . Conse-
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Fig. 3. Pearson correlation coefficients ρ̂bMRW (left) and multifrac-
tal correlation ρ̂mf (right) as a function of ρmf for ρss = 0; shown
are averages (red circles), standard deviations (error bars) and theo-
retical values (blue dashed lines)

quently, for ρmf 6= 0, the process components are strictly uncorre-
lated but dependent.

Fig. 3 plots averages and standard deviations of estimates
ρ̂bMRW and ρ̂mf as a function of ρmf . It shows that, indeed,
the Pearson correlation coefficient ρ̂bMRW ' 0 for ρmf ∈ [−1, 1],
hence it is completely blind to the dependence between the pro-
cess components. In contrast, the multifractal correlation ρ̂mf =

−ĉ11/
√
|ĉ20ĉ02| provides excellent estimates for ρmf and unam-

biguously reveals the dependence beyond second statistical order,
even for modest values for the correlation |ρmf |.

These situations are further illustrated in Fig. 4, which plots
several examples of sample path trajectories (left column) with
common univariate parameters and ρss = 0, yet different ρmf ∈
{−0.9, 0, 0.5, 0.9} (from top to bottom), together with the corre-
sponding bivariate multifractal spectra estimated using (4) (right
column, averages over 100 realizations). In the case ρmf = 0, the
multifractal spectrum is supported on an ellipse whose main axes are
aligned with the h1 and h2 axes, and whose widths are controlled
directly and independently by c02 and c20. In this case, the process
components are not only uncorrelated but also independent. For
ρmf = 0.5 and, a forteriori, in the case ρmf = 0.9, the support
of L(h) is rotated towards the diagonal and concentrates along the
main axis of a slim, rotated ellipse, clearly revealing a situation
departing from the previous case without higher-order dependence.
Visual investigation of the sample path trajectories indicates that
in this situation, the magnitudes of the process components tend
to expand and shrink simultaneously. Finally, when ρmf = −0.9,
the support of L(h) is rotated towards the anti-diagonal, and one
sample trajectory tends to expand at time instances where the other
one shrinks, and vice versa. Note that the projections of L(h) on
the h1 = 0 and h2 = 0 planes, respectively, have the same position,
shape and width since these are entirely controlled by the univariate
parameters (c10, c01, c20, c02) only, which are the same in all cases.

To conclude, all these results show that while the traditional cor-
relation measure indicates no correlation amongst the two compo-
nents, ρ̂bMRW ' 0, the shape of the multifractal spectrum, that can
in this simple pedagogical model process be summarized by the mul-
tifractal correlation ρmf , captures statistical dependencies amongst
components beyond Pearson correlation and second order statistics.
These dependencies are thus involving the entire joint statistical dis-
tribution of the bivariate process. In the multifractal setting, these
dependencies take the form of joint occurrences of local or transient
singularities of same strengths, or equivalently, related values for the
Hölder exponents (h1(t), h2(t)) for each time location t.

Fig. 4. Bivariate sample paths of b-MRW (left column) and esti-
mates of D(h) (right column, averages over 100 realizations) for
ρss = 0 and ρmf ∈ {−0.9, 0, 0.5, 0.9} (from top to bottom).

5. CONCLUSIONS AND PERSPECTIVES

The present work defined a wavelet leader based bivariate multifrac-
tal formalism for the estimation of the joint multifractal spectrum
of pairs of time series. The estimation performance for univariate
and bivariate multifractal parameters was assessed, studied and vali-
dated numerically for bivariate MRW, a bivariate extension of a sim-
ple yet versatile stochastic multifractal model. We provided intuitive
interpretations and illustrations for the essence of the wealth of in-
formation that is captured by the bivariate multifractal spectrum. In
particular, it was shown that it permits to model and quantify local
and transient dependencies involving the entire joint statistical distri-
bution of the random vectors defining the bivariate process, beyond
second statistical order and hence correlation analysis, that can be
interpreted in terms of pointwise inter-related regularity exponents.
The proposed joint multifractal modeling and analysis framework
extends beyond bivariate time series and to the use of p-leaders and
p-exponents as multiresolution quantities and regularity exponents.
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