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ABSTRACT

Important problems in wireless networks can often be solved
by computing fixed points of standard or contractive interfer-
ence mappings, and the conventional fixed point algorithm is
widely used for this purpose. Knowing that the mapping used
in the algorithm is not only standard but also contractive (or
only contractive) is valuable information because we obtain
a guarantee of geometric convergence rate, and the rate is re-
lated to a property of the mapping called modulus of contrac-
tion. To date, contractive mappings and their moduli of con-
traction have been identified with case-by-case approaches
that can be difficult to generalize. To address this limitation
of existing approaches, we show in this study that the spec-
tral radii of asymptotic mappings can be used to identify an
important subclass of contractive mappings and also to es-
timate their moduli of contraction. In addition, if the fixed
point algorithm is applied to compute fixed points of positive
concave mappings, we show that the spectral radii of asymp-
totic mappings provide us with simple lower bounds for the
estimation error of the iterates. An immediate application of
this result proves that a known algorithm for load estimation
in wireless networks becomes slower with increasing traffic.

Index Terms— Contractive interference mappings, stan-
dard interference mappings, convergence rate

1. INTRODUCTION

The objective of this study is to investigate convergence prop-
erties of the sequence (xn)n∈N generated by the following
instance of the standard fixed point algorithm:

xn+1 = T (xn), (1)
where x1 ∈ RN+ is an arbitrary initial point; RN+ denotes the
set of nonnegative vectors of dimension N ; and T : RN+ →
RN+ is a standard interference mapping as defined in [1] or a
(c-)contractive mapping as defined in [2], or both. Previous
studies [1, 2] have shown that, if T is a standard interference
mapping with Fix(T ) := {x ∈ RN+ | x = T (x)} 6= ∅
or a contractive mapping, then Fix(T ) is a singleton, and
the sequence generated by (1) converges to the fixed point
x? ∈ Fix(T ). The algorithm in (1) plays a pivotal role
in many power and resource allocation mechanisms in wire-
less networks [1–14], so establishing its convergence rate is a
problem of significant practical importance [2, 5, 6, 8].

If the mapping T in (1) is only a standard interference
mapping, then the fixed point algorithm can be particularly
slow because we can have sublinear convergence rate [2, Ex-
ample 1]. This fact has motivated the authors of [2] to in-
troduce the above-mentioned c-contractive interference map-
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pings, where c ∈ [0, 1[ is an intrinsic property of the map-
ping called modulus of contraction (see Definition 1 in Sect. 2
for details). In particular, by knowing that the mapping T
in (1) is contractive, we rule out the possibility of sublin-
ear convergence rate. More precisely, by using (1) with a
c-contractive mapping T to estimate x? ∈ Fix(T ), the error
‖xn − x?‖ of the estimate xn at iteration n ∈ N is upper
bounded by [2]

‖xn − x?‖ ≤ cn−1B‖x1 − x?‖, (2)
where B ∈ R+ is a parameter that depends on the choice
of the norm ‖ · ‖. Therefore, with knowledge of the small-
est modulus of contraction c, we can evaluate whether the
recursion in (1) can obtain a good estimate of x? ∈ Fix(T )
with few iterations. However, simple and general approaches
to verify whether a mapping is contractive have not been pro-
posed in [2]. Furthermore, that study has not considered com-
putationally efficient methods to obtain the smallest modulus
of contraction.

Against this background, in this study we show that infor-
mation about the smallest modulus of contraction of a convex
contractive interference mapping can be obtained from the
spectral radius of its associated asymptotic mapping, a con-
cept recently introduced in [15, 16]. We further show easily
verifiable sufficient conditions to determine whether a given
mapping is contractive. In addition, we give lower bounds for
the estimation error of the iterates in (1) with positive con-
cave mappings that are not necessarily contractive. Unlike
the bounds in previous studies [5, Ch. 5] [2, 6], those derived
here only depend on parameters that are easy to compute in
practice, and we do not assume that the mappings used in (1)
are constructed by combining a finite number of affine map-
pings. As an application of the results in this study, we show
bounds for the estimation error of the iterates generated by (1)
with a nonlinear mapping widely used to estimate the load of
base stations in wireless networks [3,8,17–20]. In this appli-
cation, our bounds give a formal proof that the algorithm for
load estimation becomes slower with increasing traffic.

2. PRELIMINARIES

In this section we establish notation and review the main
mathematical concepts used in this study. In more detail, the
sets of nonnegative and positive reals are denoted by, respec-
tively, R+ and R++. Inequalities involving vectors should be
understood coordinate-wise. A norm ‖ · ‖ in RN is mono-
tone if (∀x ∈ RN+ )(∀y ∈ RN+ ) x ≤ y ⇒ ‖x‖ ≤ ‖y‖.
We say that a sequence (xn)n∈N ⊂ RN+ converges to x?

if limn→∞ ‖xn − x?‖ = 0 for some (and hence for ev-
ery) norm ‖ · ‖ in RN , and in this case we also write xn →
x?. Given a norm ‖ · ‖ and a sequence (xn)n∈N ⊂ RN+ ,
if (∃c ∈ [0, 1[)(∃B ∈ R+)(∀n ∈ N) ‖xn+1 − x?‖ ≤
cnB‖x1 − x?‖, then we say that (xn)n∈N (or the algorithm
generating the sequence) converges geometrically fast. The
(effective) domain of a function f : RN → R∪{−∞,∞} is
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the set given by domf := {x ∈ RN | f(x) <∞}, and f is
proper if domf 6= ∅ and (∀x ∈ RN ) f(x) > −∞.

Definition 1. (Standard and c-contractive interference map-
pings:) Consider the following statements for a continuous
mapping T : RN+ → RN++:

(i) [monotonicity] (∀x ∈ RN+ )(∀y ∈ RN+ ) x ≥ y ⇒
T (x) ≥ T (y)

(ii) [scalability] (∀x ∈ RN+ ) (∀α > 1) αT (x) > T (αx).

(iii) [contractivity] (∃(v, c) ∈ RN++ × [0, 1[)(∀x ∈
RN+ )(∀ε > 0) T (x+ εv) ≤ T (x) + cεv

If (i) and (ii) are satisfied, then T is said to be a standard
interference mapping [1]. If T satisfies (i) and (iii), then T
is called a contractive interference mapping. In this case, if
a scalar c with the property in (iii) is known, then c is called
a modulus of contraction for T , and we also say that T is
c-contractive to emphasize this knowledge [2].

A mapping T : RN+ → RN+ is said to be concave (re-
spectively convex) if each coordinate function is concave (re-
spectively convex). Recall from the Introduction that the set
of fixed points of a mapping T : RN+ → RN+ is denoted by
Fix(T ) := {x ∈ RN+ | T (x) = x}. If T is contractive,
then Fix(T ) is a singleton [2]. If T is a standard interfer-
ence mapping, then Fix(T ) is either a singleton or the empty
set [1].

Given a proper function f : RN → R ∪ {∞}, we
say that f∞ : RN → R ∪ {−∞} ∪ {∞} : x 7→
lim inft→∞,y→x f(ty)/t is the asymptotic function asso-
ciated with f [21, Ch. 2.5], and note that f∞ is positively
homogeneous [i.e., (∀x ∈ RN )(∀α > 0)f(αx) = α f(x)]
and lower semicontinuous [21, Proposition 2.5.1]. Asymp-
totic functions associated with convex functions have the
following useful property:

Fact 1. [21, Proposition 2.5.2] Let f : RN → R ∪ {∞} be
proper, lower semicontinuous, and convex. Then
(∀d ∈ RN ) f∞(d) = sup{f(x+ d)− f(x) | x ∈ domf}.

In the next Lemma, we show a result related to Fact 1 for
nonnegative concave functions. We omit the proof because
of the space limitation.

Lemma 1. Let f : RN → R+ ∪ {∞} be a function such
that dom f = RN+ . Assume that f is continuous and concave
if restricted to its domain. Then (∀d ∈ dom f) f∞(d) =
inf{f(x+ d)− f(x) | x ∈ dom f}.

We now introduce a slight generalization of the concept
of asymptotic mappings given in [15, 16].

Definition 2. (Asymptotic mappings:) Let T : RN+ → RN+ :

x 7→ [T (1)(x), · · · , T (N)(x)] be a mapping such that, for
each i ∈ {1, . . . , N}, the function T (i) : RN → R+ ∪
{∞} is proper and dom T (i) = dom T

(i)
∞ = RN+ . For

these mappings, we say that T∞ : RN+ → RN+ : x 7→
[T

(1)
∞ (x), · · · , T (N)

∞ (x)] is the asymptotic mapping associ-
ated with T .

If T : RN+ → RN+ is a continuous concave mapping,
a standard interference mapping, or a convex mapping hav-
ing an asymptotic mapping, then we can use the follow-
ing analytical simplification to obtain the asymptotic map-
ping [15, 16] [21, Corollary 2.5.3]: (∀x ∈ RN+ ) T∞(x) =
limt→∞(1/t)T (tx). The spectral radius ρ(T∞) of a con-
tinuous and monotonic (see Definition 1(i)) asymptotic

mapping T∞ is the value given by ρ(T∞) := sup{λ ∈
R+ | (∃x ∈ RN+\{0}) T∞(x) = λx} ∈ R+, and we recall
that there always exists an eigenvector x ∈ RN+ satisfying
ρ(T∞)x = T∞(x) [22]. The next fact is crucial to prove our
main contributions.

Fact 2. [15] Let T : RN+ → RN++ be a standard interference
mapping. Then Fix(T ) 6= ∅ if and only if ρ(T∞) < 1.

3. CONVERGENCE PROPERTIES OF THE
STANDARD FIXED POINT ALGORITHM

By (2), the sequence generated by (1) with a c-contractive
mapping T has the desirable property of converging geomet-
rically fast, and the convergence speed is directly related to
the modulus of contraction c. Therefore, identifying contrac-
tive mappings and estimating their moduli of contraction are
important tasks. In Sect. 3.2, we prove that the spectral radii
of asymptotic mappings can be used for these tasks if T is
convex. Then, in Sect. 3.3 we show that, if the fixed point al-
gorithm in (1) is used with an arbitrary (continuous) positive
concave mapping T , then the spectral radius of T∞ provides
us with information about the fastest convergence speed we
can expect from the algorithm. All these results are especially
useful if we can easily evaluate the spectral radii of arbitrary
asymptotic mappings, so we start by showing in Sect. 3.1
simple algorithms for this purpose. These algorithms also en-
able us to obtain information about an eigenvector associated
with the spectral radius.

3.1. Spectral radius of asymptotic mappings

Let T∞ : RN+ → RN+ be a continuous asymptotic mapping
associated with a continuous mapping T : RN+ → RN+ sat-
isfying property (i) in Definition 1. It can be verified that
T∞ also satisfies property (i). If T∞ is in addition concave
and primitive, in the sense that1 (∀x ∈ RN+\{0})(∃p ∈
N)(∀m ≥ p)Tm∞(x) > 0, then the sequence (xn)n∈N gen-
erated by

xn+1 =
1

‖T∞(xn)‖
T∞(xn), x1 ∈ RN+\{0} (3)

with an arbitrary monotone norm ‖ · ‖ converges to a point
x? ∈ RN++ such that T∞(x?) = ‖T∞(x?)‖ x? and ‖x?‖ =
1 [23, 24]. Therefore, by [22, Lemma 3.3], we conclude that
ρ(T∞) = ‖T∞(x?)‖. In practical terms, the iteration in (3)
is a simple algorithm to compute the spectral radius and a
corresponding eigenvector of an asymptotic mapping, pro-
vided that the assumptions mentioned above are valid. In
more challenging cases in which existing results such as those
in [23, 24] does not necessarily guarantee convergence of (3)
to a point x? satisfying ρ(T∞) = ‖T∞(x?)‖, we propose an
approach based on the following result (the proof is omitted
because of the space limitation):

Proposition 1. Let T∞ : RN+ → RN+ be a continuous asymp-
totic mapping satisfying the monotonicity property in Defini-
tion 1, and consider the mapping Tε : RN+ → RN+ : x 7→
T∞(x) + ε1, where 1 ∈ RN denotes the vector of ones and
ε > 0 is arbitrary. For a given parameter p > 0, let the
sequence (xp,n)n∈N be generated by

xp,n :=
p

‖Tε(xp,n)‖
Tε(xp,n), (4)

where xp,1 ∈ RN+ is arbitrary, and ‖ · ‖ is a monotone norm.
Then we have the following:

(i) Tε is a standard interference mapping.

1Tm∞ denotes the m-fold composition of T∞ with itself.
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(ii) For every p > 0, the sequence (xp,n)n∈N con-
verges to a point x?p ∈ RN++ satisfying Tε(x

?
p) =

(‖Tε(x?p)‖/p) x?p and ‖x?p‖ = p.

(iii) (∀p > 0) ρ(T∞) ≤ ‖Tε(x?p)‖/p
(iv) limp→∞ ‖Tε(x?p)‖/p = ρ(T∞)

(v) If (pn) ⊂ R++ is a sequence satisfying limn→∞ pn =
∞, then any accumulation point of (x?pn)n∈N is an
eigenvector of T∞ associated with the eigenvalue
ρ(T∞).

In simple terms, Proposition 1(iii)-(iv) shows that the
spectral radius ρ(T∞) of any asymptotic mapping T∞ that
is monotonic and continuous can be estimated with any ar-
bitrary precision by using (4). Informally, given an arbitrary
scalar ε > 0, if n ∈ N and p ∈ R++ are sufficiently large,
then ρ(T∞) ≈ ‖Tε(xp,n)‖/p, where (xp,n)n∈N is the se-
quence generated by (4). Furthermore, by assuming that
(x?pn)n∈N in Proposition 1(v) converges, then xp,n with the
above parameters is an approximation of an eigenvector of
T∞ associated with the spectral radius ρ(T∞).

3.2. Convex mappings

Checking whether a continuous and monotonic mapping T :
RN+ → RN++ is c-contractive may be challenging because
proving the existence of a tuple (v, c) ∈ RN++ × [0, 1[ with
the property in Definition 1(iii) may be difficult. However, as
we show in the next proposition, if T is convex (as common in
many robust wireless resource allocation problems [13, 14]),
then knowledge of the spectral radius of T∞, assuming that
T∞ exists, can be used to determine whether T is contractive.

Proposition 2. Let T : RN+ → RN++ be a continuous convex
mapping that has an associated continuous asymptotic map-
ping T∞ : RN+ → RN+ . Further assume the following: (i)
there exists a (strictly) positive vector v ∈ RN++ such that
T∞(v) = ρ(T∞)v, (ii) T satisfies the monotonicity property
in Definition 1, and (iii) ρ(T∞) < 1. Then T is c-contractive
for any c ∈ [ρ(T∞), 1[ ⊂ [0, 1[.

Proof. We only have to show that the property in Defini-
tion 1(iii) can be satisfied with c = ρ(T∞) ≥ 0. To this end,
let v ∈ RN++ be a vector with the property in assumption
(i). Now, by Fact 1 and positive homogeneity of asymptotic
mappings, we deduce (∀ε > 0)(∀x ∈ RN+ ) T (x + εv) ≤
T (x) + T∞(εv) = T (x) + ρ(T∞)εv, and the claim fol-
lows.

We note that there are many simple results to verify as-
sumption (i) in Proposition 2 without explicitly computing a
so-called (nonlinear) eigenvector v ∈ R++ [25]. In addition,
neither assumption (ii) nor assumption (iii) can be dropped.
The former is required because of the definition of contractive
mappings, and the latter is also necessary because, as shown
below, the spectral radius of the asymptotic mapping T∞ as-
sociated with a c-contractive mapping T is a lower bound for
the modulus of contraction c ∈ [0, 1[.

Proposition 3. Let T : RN+ → RN++ be c-contractive and
convex. Then T has a continuous asymptotic mapping T∞ :
RN+ → RN+ satisfying ρ(T∞) ≤ c ∈ [0, 1[.

Proof. By definition, if T is c-contractive, there exists
(v, c) ∈ RN++ × [0, 1[ such that

(∀ε > 0)(∀x ∈ RN+ )T (x+ εv)− T (x) ≤ cεv. (5)

Denote by T (i) : RN+ → RN++ the ith coordinate function of
the mapping T ; i.e., (∀x ∈ RN+ )[T (1)(x), · · · , T (N)(x)] :=
T (x). Since T is continuous and convex, by Fact 1 we have

(∀d ∈ RN+ )(∀i ∈ {1, · · · , N})
T (i)
∞ (d) := sup{T (i)(x+ d)− T (i)(x) | x ∈ RN+}. (6)

To prove that T∞(x) := [T
(1)
∞ (x), · · · , T (N)

∞ (x)] ≥ 0 for
x ∈ RN+ is the asymptotic mapping associated with T (in the
sense of Definition 2), we need to show that dom T

(i)
∞ = RN+

for each i ∈ {1, . . . , N} . To this end, take the coordi-
natewise supremum in (5) over x ∈ RN+ and apply (6) with
d = εv and an arbitrary ε > 0 to obtain

[T (1)
∞ (εv), · · · , T (N)

∞ (εv)] =: T∞(εv) ≤ cεv. (7)
By positivity of v, for an arbitrary x ∈ RN+ , there exists
η > 0 such that x ≤ ηv. Since ε > 0 in (7) can be chosen
arbitrarily, we can use η = ε and monotonicity of T to deduce
T∞(x) ≤ T∞(ηv) ≤ cηv ∈ RN+ . As a result, we have
T

(i)
∞ (x) < ∞ for all x ∈ RN+ and all i ∈ {1, . . . , N} as

claimed. (We can also show that T∞ is continuous in RN+ ,
but we omit the proof because of the space limitation.) With
the inequality in (7) and continuity of T∞, we also obtain
ρ(T∞) ≤ c by [22, Lemma 3.3], and the proof is complete.

We now show a useful relation between contractive and
standard interference mappings. From a practical perspec-
tive, the next result and (2) reveal that many existing iterative
algorithms for power control in wireless networks converge
geometrically fast. Furthermore, the inequality in (2), Propo-
sition 2, and Proposition 3 show that the concept of spectral
radius of asymptotic mappings provides us with information
about the convergence speed of these algorithms.

Proposition 4. Let T : RN+ → RN++ be a convex standard
interference mapping. Then ρ(T∞) < 1 is a sufficient and
necessary condition for T to be contractive.

Proof. By Fact 2, if ρ(T∞) ≥ 1, then Fix(T ) = ∅, so T can-
not be contractive because contractive mappings have a fixed
point [2]. Therefore, ρ(T∞) < 1 is a necessary condition. To
prove sufficiency, we only need to show that property (iii) in
Definition 1 is satisfied if ρ(T∞) < 1. By Fact 2, if ρ(T∞) <
1 then there exists x? ∈ RN++ such that x? = T (x?). By [16,
Lemma 1(ii)] and T∞(x?) = limt→∞ T (tx

?)/t [21, Corol-
lary 2.5.3], we have T∞(x?) < T (x?) = x?. As a result,
there exists c ∈ [0, 1[ such that εT∞(x?) ≤ εcx? for all
ε > 0. Therefore, by the positive homogeneity of asymp-
totic functions, we have T∞(εx?) ≤ εcx? for all ε > 0. By
Fact 1, we conclude that T (x+ εx?)−T (x) ≤ T∞(εx?) ≤
εcx? for every x ∈ RN+ , and the desired result follows.

3.3. Concave mappings

We now proceed to study convergence properties of the al-
gorithm in (1) with (continuous) positive concave mappings,
and we recall that these mappings are also standard [8, Propo-
sition 1]. In particular, the next proposition proves that the
spectral radii of asymptotic mappings can be used to obtain a
lower bound for the estimation error of the sequence gener-
ated by (1) – see the inequality in (8).

Proposition 5. Assume that T : RN+ → RN++ is continuous
and concave with ∅ 6= Fix(T ) =: {x?}, and denote by v ∈
RN+\{0} any vector satisfying T∞(v) = ρ(T∞)v (a vector
with this property always exists [22]). To simplify notation,
define ρ := ρ(T∞) < 1, where the inequality follows from
Fact 2. Then each of the following holds:

(i) (∀n ∈ N)(∀ε > 0) Tn(x? + εv) ≥ x? + ρnεv
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(ii) (∀n ∈ N)(∀ε > 0) x? ≥ εv ⇒ Tn(x? − εv) ≥
x? − ρnεv

(iii) If x1 ∈ RN+ is such that x1 ≤ x? − εv or x1 ≥
x? + εv ≥ 0 for some ε > 0, then

ρnε‖v‖ ≤ ‖Tn(x1)− x?‖ → 0 (8)
for any monotone norm ‖ · ‖ and every n ∈ N.

Proof. (i) We prove the result by induction on n. By
Lemma 1, we know that
(∀d ∈ RN+ )(∀x ∈ RN+ )T∞(d) ≤ T (x+ d)− T (x). (9)

In particular, for d = εv and x = x? with ε > 0 arbitrary,
we have ρεv = T∞(εv) ≤ T (x? + εv)− x?, which shows
that the desired inequality is valid for n = 1. Now assume
that Tn(x? + εv) ≥ x? + ρnεv is valid for an arbitrary
n ∈ N. As a consequence of the monotonicity of T , we have

Tn+1(x? + εv) ≥ T (x? + ρnεv). (10)
Now substitute d = ρnεv and x = x? into (9) and use
the positive homogeneity property of T∞ to verify that
ρn+1εv = T∞(ρnεv) ≤ T (x? + ρnεv) − x?, and
thus ρn+1εv + x? ≤ T (x? + ρnεv). Combining this
inequality with that in (10), we obtain the desired result
Tn+1(x? + εv) ≥ x? + ρn+1εv, and the proof is complete.

(ii) The proof is similar to that in part (i), so it is omitted
for brevity.

(iii) If x1 ≥ x? + εv ≥ x? for some ε > 0, then
(∀n ∈ N) Tn(x1) ≥ Tn(x? + εv) ≥ Tn(x?) = x? by
monotonicity of T . Therefore, (∀n ∈ N) Tn(x1) − x? ≥
Tn(x? + εv) − x? ≥ ρnεv, where the last inequality fol-
lows from part (i). Monotonicity of the norm ‖ · ‖ now shows
that (∀n ∈ N)‖Tn(x1)− x?‖ ≥ ρnε‖v‖. In addition, posi-
tive concave mappings are standard interference mappings [8,
Proposition 1], so ‖Tn(x1) − x?‖ → 0 by [1, Theorem 2],
and the proof for x1 ≥ x? + εv ≥ x? is complete. We skip
the proof for x1 ≤ x? − εv ≤ x? because it is similar.

4. NUMERICAL EXAMPLE

To illustrate the results obtained in the previous section in
a concrete application, we study the convergence speed
of a well-known algorithm for load estimation in wire-
less networks [3, 8, 11, 15, 17–19]. The algorithm is sim-
ply the iteration in (1) with the concave mapping given by
T : RN+ → RN++ : x 7→ [t1(x), · · · , tN (x)], where, for all
i ∈ {1, . . . , N} =:M and all x ∈ RN+ ,

ti(x) :=
∑
j∈Ni

dj

KB log2

1 +
pigi,j∑

k∈M\{i}
xkpkgk,j + σ2


,

(11)
M is the set of base stations, Ni 6= ∅ is the set of users con-
nected to base station i, dj ∈ R++ is the traffic (in bits/s) re-
quested by the jth user, K ∈ N is number of resource blocks
in the system,B ∈ R++ is the bandwidth per resource block,
pi > 0 is the transmit power per resource block of base sta-
tion i, gi,j > 0 is the pathloss between base station i and user
j, and σ2 > 0 is the noise power per resource block. The ith
component x?i of the fixed point x? ∈ Fix(T ), if it exists,
shows the fraction of resource blocks that base station i re-
quires to satisfy the traffic demand of its users. Although we
cannot have x?i > 1 in real network deployments, knowledge
of these values is useful to rank base stations according to the
unserved traffic demand [18]. See [3, 8, 11, 15, 17, 18, 20] for
additional details on the load estimation problem.

The asymptotic mapping associated with T is given
by [15] T∞ : RN+ → RN+ : x 7→ diag(p)−1Mdiag(p)x,
where diag(p) ∈ RN×N+ is a diagonal matrix with diagonal
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Fig. 1: Estimation error as a function of the number of itera-
tions.

elements obtained from the components of the power vector
p := [p1, . . . , pN ], and the component [M ]i,k of the ith
row and kth column of the matrix M ∈ RN×N+ is given by
[M ]i,k = 0 if i = k or [M ]i,k =

∑
j∈Ni

ln(2)djgk,j/(KBgi,j)

otherwise. The asymptotic mapping T∞ is linear, so ρ(T∞)
is simply the spectral radius of the matrix M .

With the results in Proposition 5, we can prove that
the convergence rate of the recursion in (1) is expected to
decrease with increasing traffic. To this end, let T ′(x) =
βT (x) for every x ∈ RN+ , where β ∈ R++ is a design pa-
rameter. This new mapping T ′ can be obtained, for example,
by scaling uniformly the traffic demand of every user by a
factor β, and we assume that ρ(T∞) < 1. We can verify that
ρ(T ′∞) = βρ(T∞) > 0. As a result, in light of the bound
in (8), by increasing β, the algorithm is expected to become
increasingly slow as ρ(T ′∞) = βρ(T∞) < 1 approaches the
value one. (The algorithm diverges if βρ(T∞) ≥ 1.)

Fig. 1 illustrates the above points. It shows the estimation
error ‖xn−x?‖2 of the fixed point iteration (FPI) in (1) with
x1 = 0 and the bound in Proposition 5(iii) for the mappings
T and T ′ described above. The parameter β > 1 for T ′ was
chosen to satisfy ρ(T ′∞) = 0.99. For the construction of T ,
we use a scenario similar to that in [8, Sect. V-A]. Briefly,
we obtained snapshots of a network with 1,500 users request-
ing a traffic of 300 kbps each, and we picked one snapshot
with ρ(T∞) < 0.99, in which case we also have Fix(T ) 6= ∅
as an implication of Fact 2. Other parameters of the simula-
tion were the same as those in [8, Table I]. To compute the
bound in (8) for T , we set the vector v to the right eigenvector
of diag(p)−1Mdiag(p) (obtained by using (3)) associated
with the eigenvalue ρ(T∞). In turn, the scalar ε in (8) was
set to the largest positive real such that x? − εv ∈ RN+ . The
bound for T ′ was constructed in a similar way. As expected,
the numerical results in Fig. 1 are consistent with the theoret-
ical findings.

5. CONCLUSIONS AND FINAL REMARKS
We have shown that knowledge of the spectral radius of
asymptotic mappings is useful to relate standard and contrac-
tive interference mappings, and with this knowledge we also
obtain information about the convergence speed of widely
used instances of the recursion in (1). One advantage of the
analysis shown here over existing results in the literature is
that we do not assume the mapping T in (1) to be constructed
by combining a finite number of affine functions. Further-
more, unlike previous results, in the proposed approaches
the parameters used to obtain bounds for the convergence
speed are easy to estimate. The bounds derived here show,
for example, that the converge speed of a well-known iter-
ative algorithm for load estimation in wireless networks is
expected to decrease with increasing traffic.
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its of solutions to network utility maximization prob-
lems,” arXiv:1701.06491, 2017.

[17] K. Majewski and M. Koonert, “Conservative cell load
approximation for radio networks with Shannon chan-
nels and its application to LTE network planning,” in
Telecommunications (AICT), 2010 Sixth Advanced In-
ternational Conference on, May 2010, pp. 219 –225.

[18] Ioana Siomina and Di Yuan, “Analysis of cell load
coupling for LTE network planning and optimization,”
IEEE Trans. Wireless Commun., vol. 11, no. 6, pp.
2287–2297, June 2012.

[19] Iana Siomina and Di Yuan, “On optimal load setting of
load-coupled cells in heterogeneous LTE networks,” in
Communications (ICC), 2014 IEEE International Con-
ference on. IEEE, 2014, pp. 1254–1259.

[20] C Ho, Di Yuan, and Sumei Sun, “Data offloading in
load coupled networks: A utility maximization frame-
work,” IEEE Trans. Wireless Commun., vol. 13, no. 4,
pp. 1921–1931, April 2014.

[21] A. Auslender and M. Teboulle, Asymptotic Cones and
Functions in Optimization and Variational Inequalities,
Springer, New York, 2003.

[22] Roger D Nussbaum, “Convexity and log convexity for
the spectral radius,” Linear Algebra and its Applica-
tions, vol. 73, pp. 59–122, 1986.

[23] Ulrich Krause, “Perron’s stability theorem for non-
linear mappings,” Journal of Mathematical Economics,
vol. 15, no. 3, pp. 275–282, 1986.

[24] Ulrich Krause, “Concave Perron–Frobenius theory and
applications,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 47, no. 3, pp. 1457–1466, 2001.
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