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ABSTRACT

In this paper, we propose a new regularized robust estimation ap-
proach based on the robust τ -estimator applied to linear ill-posed
problems in the presence of noise outliers. Additionally, we intro-
duce a new approach to obtain the optimal regularization parameter
for the proposed robust estimator by using tools from random matrix
theory. Simulation results demonstrate that the proposed approach
with its automated regularization parameter selection outperforms a
set of benchmark methods.

Index Terms— Linear inverse problem, regularization, robust
estimation, tau estimator.

1. INTRODUCTION

Robust linear estimation has attracted a lot of interest in many fields
of engineering such as wireless communication [1], control theory,
and computer vision [2]. In this paper, we tackle the problem of
recovering a vector of coefficients x ∈ RK from an observation
vector y ∈ RM related to x through

y = Hx + z, (1)

where H ∈ RM×K is a known measurement matrix that has in-
dependent and identically distributed (i.i.d.) Gaussian entries and
z ∈ RM is an unknown noise vector. The entries of x are i.i.d. from
a certain distribution of zero mean and variance σ2

x. We focus on the
case where the problem based on (1) is ill-posed and the noise z is
subject to the occurrence of outliers.

Owing to the lack of prior knowledge on x, the least-square (LS)
estimator, which is based on minimizing the norm of the residual er-
ror ||y − Hx||22, is normally used. The LS estimator is the best
linear unbiased estimator when the noise z has i.i.d. Gaussian en-
tries. However, the LS estimator is known to be very sensitive to the
occurrence of outliers in z. Another difficulty associated with the LS
estimator is when the problem is ill-posed. The LS solution for this
category of problems may not exist, is not unique, and/or does not
depend continuously on the initial data (i.e., unstable) [3].

A common way to overcome the outliers effect on the LS esti-
mator is to replace the norm function by a slowly increasing func-
tion that absorbs the large residuals influence. This class of estima-
tors is referred to as robust estimators [4]; among them are the M-
estimators [5], the S-estimators [6], the MM-estimators, and the τ -
estimators [7]. The performance of robust estimators is measured by
their breakdown point (BP) which refers to the proportion of outliers
that the estimator can handle before the outlier effect overwhelms
the model [4].

The S-estimators and the MM-estimators are developed to pro-
vide higher breakdown points. The MM-estimators is known to be
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more efficient than the S-estimators. The τ -estimators enjoy the ro-
bustness and the efficiency of the MM-estimators in addition to hav-
ing lower maximum bias curves.

Regularization methods are used to overcome the difficulties as-
sociated with ill-posed problems [3, 8, 9]. The most common form
of regularization is Tikhonov which is given in its simplified form
by

x̂ := arg min
x

{
||y −Hx||22 + λ ||x||22

}
, (2)

where λ is a regularization parameter. In [10, 11, 12], the authors
derived a new regularization approach for linear ill-posed problems,
and in [13] for linear problems with Gaussian random matrices that
are based on enhancing the singular-value structure of H. The prob-
lem tends to be formulated as

x̂ := arg min
x

{
||y −Hx||2 + γ (H,y) ||x||2

}
, (3)

where γ is a function of both y and H. These estimators are shown
to outperform many benchmark regularization methods in terms of
the mean-squared error (MSE). However, they are derived based on
the assumption that z has i.i.d. entries without outliers.

Combining robust estimators with regularization leads to ro-
bust regularized estimators such as the regularized M-estimators,
S-estimators [14], and MM-estimators [15]. Recently, in [16], a new
regularized τ -estimator is derived and shown to be the most efficient
regularized estimator with higher BP than the other estimators.

One of the major issues associated with robust regularized es-
timators is the selection of the regularization parameter. Several
robust estimators obtain this parameter by using exhaustive search
algorithm [16, 17, 18], which is computationally intractable. Other
algorithms use the generalized cross-validation (GCV) [19], which
does not necessarily produce an optimal (or close to optimal) regu-
larizer since it assumes Gaussian zero mean noise.

In this paper, we develop a new robust regularized estimator by
modifying the cost function in [10, 11, 12], (i.e., (3)) to handle the
presence of noise outliers. Moreover, we introduce a new approach
to obtain the optimal regularization parameter in a way that mini-
mizes the MSE of the estimator by using tools from random matrix
theory (RMT). This regularized estimator is shown to offer remark-
able performance enhancement in addition to significant computa-
tional complexity reduction.

2. THE PROPOSED REGULARIZED τ -ESTIMATOR

Given a set of residuals ri = yi − ĥTi x; i = 1, . . . ,M , where
ĥTi ∈ R1×K is the i-th row of H, the M-scale estimate sM (r (x)) is
obtained by [5]

1

M

M∑
i=1

ρ1

(
ri (x)

sM (r (x))

)
= b1, (4)
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where ρ1 (·) is even, bounded, non-decreasing in [0,∞), and differ-
entiable function. The constant b1 = EΦ (ρ1 (r (x))), where Φ is
the standard normal distribution. Based on (4), the τ -scale of r (x)
is defined as [7]

τ2 (r (x)) = s2M (r (x))
1

M

M∑
i=1

ρ2

(
ri (x)

sM (r (x))

)
, (5)

where the function ρ2 (·) determines the estimator efficiency while
ρ1 (·) determines its BP [7].

2.1. Problem Formulation and Solution

As mentioned in Section 1, the proposed regularized τ -estimator is
the robust version of the estimators in [10, 11, 12]. Based on (3), we
formulate the proposed regularized τ -estimator as

x̂ := arg min
x∈RK

τreg (r (x)) = arg min
x∈RK

{
τ (r (x)) + λ ||x||2

}
. (6)

Comparing (6) to the cost function in [16], we can see that the two
functions are mathematically inequivalent since in (6) the two terms
of the cost function are not squared. The cost function in (6) is non-
convex and may have multiple local minima. In the following, we
obtain an implicit expression for its local minimum, then we discuss
how to obtain a solution.

Theorem 1. The penalized τ -estimation in (6) is given by

x̂ =
(
HTΣ (x̂) H + γ (y,H, x̂) IK

)−1

HTΣ (x̂) y, (7)

where

γ (y,H, x̂) =
2MQ (x̂)λ

sM (r (x̂))κ (x̂) ||x̂||2
, (8)

κ (x̂) =
1

r (x̂)T F1 (x̂) r (x̂)

[
2MQ2 (x̂)− r (x̂)T F2 (x̂) r (x̂)

]
.

(9)

The scalar Q (x̂) =
[

1
M

∑M
i=1 ρ2

(
ri(x̂)

sM(r(x̂))

) ] 1
2 while

Ft (x̂) = diag
(
F it (x̂)

)
∈ RM×M , t = 1, 2. (10)

F it (x̂) = ρ
(1)
t

(
ri (x̂)

sM (r (x̂))

)
1

ri (x̂) sM (r (x̂))
; i = 1, . . . ,M.

(11)
The diagonal matrix Σ is given by

Σ = F1 +
1

κ (x̂)
F2. (12)

Proof. The first derivative of the cost function in (6) is

∇xτreg (r (x)) = ∇xsM (r (x))

[
1

M

M∑
i=1

ρ2

(
ri (x)

sM (r (x))

)] 1
2

+

∑M
i=1 ρ

(1)
2

(
ri(x)

sM(r(x))

)(
sM(r(x))ĥi−ri(x)∇xsM(r(x))

sM(r(x))2

)
2M

[
1
M

∑M
i=1 ρ2

(
ri(x)

sM(r(x))

)] 1
2

sM (r (x))

+
λ

||x||2
x. (13)

By taking the derivative of (4) w.r.t. x, we obtain

∇xsM (r (x)) =
−
∑M
i=1 ρ

(1)
1

(
ri(x)

sM(r(x))

)
ĥi∑M

i=1 ρ
(1)
1

(
ri(x)

sM(r(x))

)
ri(x)

sM(r(x))

. (14)

Substituting (14) in (13) and using Q (x) yields

∇xτreg (r (x)) =
−2MQ2 (x)

∑M
i=1 ρ

(1)
1

(
ri(x)

sM(r(x))

)
ĥi∑M

i=1 ρ
(1)
1

(
ri(x)

sM(r(x))

)
ri(x)

sM(r(x))

+

∑M
i=1 ρ

(1)
2

(
ri(x)

sM(r(x))

)
ri(x)

sM(r(x))

∑M
i=1 ρ

(1)
1

(
ri(x)

sM(r(x))

)
ĥi∑M

i=1 ρ
(1)
1

(
ri(x)

sM(r(x))

)
ri(x)

sM(r(x))

−
M∑
i=1

ρ
(1)
2

(
ri (x)

sM (r (x))

)
ĥi +

2MQ (x)λ

||x||2
x. (15)

Now, based on the definition in (10), we can write

M∑
i=1

ρ
(1)
t

(
ri (x)

sM (r (x))

)
ri (x)

sM (r (x))
= r (x)T Ft (x) r (x) , (16)

M∑
i=1

ρ
(1)
t

(
ri (x)

sM (r (x))

)
ĥi = sM (r (x)) HTFt (x) r (x) . (17)

Substituting (16) and (17) in (15), then using κ (x) as in (9) with
r (x) = y −Hx, and finally solving∇xτreg (r (x̂)) = 0, results in(

HT

(
F1 (x̂) +

1

κ (x̂)
F2 (x̂)

)
H + γ (x̂) IK

)
x̂

−HT

(
F1 (x̂) +

1

κ (x̂)
F2 (x̂)

)
y = 0, (18)

which leads directly to the expression in (7).

Since (7) represents a local minimum of (6), different starting
points x0 converge to various local minima.

3. OBTAINING THE REGULARIZATION PARAMETER

In this section, we use tools from RMT to obtain λ in (6). Our goal
here is to avoid the exhaustive search that robust estimators normally
use to find λ and to obtain a regularizer that minimizes the MSE of
the estimator in (6). We start by writing the solution in (7) as

x̂ =
(
HTRH + λ IK

)−1

HTRy, (19)

where

R =
sM (r (x̂))κ (x̂) ||x̂||2

2MQ (x̂)
Σ. (20)

The formulation in (19) suggests that we can express the local mini-
mum of (6) as the minimizer of the convex optimization

x̂ := arg min
x∈RK

{
||R

1
2 (y −Hx) ||22 + λ ||x||22

}
. (21)

The regularizer λ in (6) and (21) must be chosen judiciously to
achieve high estimator accuracy. We start our derivation by stating
our basic assumptions on (1) and (21).
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Assumption 1. Let H ∈ RM×K have i.i.d. entries with [H]i,j ∼
N (0, 1), and let R be a deterministic uniformly bounded real diag-
onal matrix of size M ×M which does not have any fluctuations.

Assumption 2. Consider the linear asymptotic regime whereM and
K grow to infinity with M/K → ρ ∈ (0,∞).

Assumption 3. We assume that the entries of x are i.i.d. from a
certain distribution density (not necessarily known) of zero mean
and unknown variance σ2

x and that the noise vector z is modeled as

z = zg + zs, (22)

where the entries of zg are i.i.d. from a certain distribution of zero
mean and unknown variance σ2

zg . The vector zs has p � M non-
zero i.i.d. elements that represent the sparse noise and can be drawn
from any distribution of zero mean and unknown variance σ2

zs . Fi-
nally, we assume that zg and zs are independent and that the variance
of z is given by σ2

z .

Based on Assumption 3, the optimal regularizer λoptimal that min-
imizes the MSE of (6) is given by [20, 21]

λoptimal =
1

SNR
=
σ2
z

σ2
x
. (23)

Since both σ2
x and σ2

z are unknowns, our main goal will be to obtain
good estimates of σ2

x and σ2
z .

Theorem 2. Under the settings of Assumptions 1, 2, and 3, and by
considering the following function

E [Ψ (H)] = E
[ 1

K
||R

1
2 (y −Hx̂) ||22 +

λ

K
||x̂||22

]
, (24)

there exists a deterministic function α (t) defined as

α (t) =
Tr (RT (t))

K (1 + tδ (t))
σ2
x +

[
Tr (R)

K
−
t Tr

(
R2T (t)

)
K (1 + tδ (t))

]
σ2
z

+O
(
K−1) , (25)

such that
E
x,z

[Ψ (H)]− α (t)
a.s.−→ 0, (26)

where t = K
λ

, “ a.s.−→” denotes the almost sure convergence, and the
notation q = O

(
K−1

)
indicates that | q

K−1 | is bounded as K →
∞. Let D be the diagonal matrix that contains the eigenvalues of
R, i.e., R = UDUT , then

T (t) = U

(
IM +

t

(1 + tδ (t))
D

)−1

UT . (27)

Finally, the variable δ (t) is defined as the unique positive solution
of the following fixed-point equation

δ (t) =
1

K
Tr

(
D

(
IM +

t

1 + t δ (t)
D

)−1
)
. (28)

Proof. Let us start by evaluating the cost function in (21) at its opti-
mal solution in (19). By doing so, we obtain

||R
1
2 (y −Hx̂) ||22 + λ ||x̂||22 = yTRy − 2yTRHGHTRy

+ yTRHGHTRHGHTRy + λyTRHG2HTRy, (29)

where G ,
(
HTRH + λIK

)−1
. Now, by taking the expected

value of (25) over H,x, and z, and based on Assumption 3, we can
express the first term in (24) using (1) and (29) as

EH,x,z

[ 1

K
||R

1
2 (y −Hx̂) ||22

]
=

σ2
xλ

2

K
EH

[
Tr
(

HTRH
(
HTRH + λIK

)−2
)]

+
σ2
z

K
EH

[
Tr (R)− Tr

(
HTR2H

(
HTRH + λIK

)−1
)

− λTr
(

HTR2H
(
HTRH + λIK

)−2
)]

. (30)

Given that
(
HTH + IK

)−1
H = H

(
HHT + IM

)−1
and by defin-

ing Ĥ , R
1
2 H, we can write (30) as

EH,x,z

[ 1

K
||R

1
2 (y −Hx̂) ||22

]
=
σ2
z

K
EH

[
Tr (R)

− t Tr

(
R

(
t

K
ĤĤT + IM

)−1
ĤĤT

K

)

− t Tr

(
R

(
t

K
ĤĤT + IM

)−2
ĤĤT

K

)]

+
σ2
x

K
EH

[
Tr

(
ĤĤT

(
t

K
ĤĤT + IM

)−2
)]

. (31)

Following the same procedure, we can obtain the corresponding ex-
pression for the second term in (24). Then, we can prove that

EH,x,z

[ 1

K
||R

1
2 (y −Hx̂) ||22 +

λ

K
||x̂||22

]
=
σ2
z

K
EH

[
Tr (R)

− t Tr

(
R

(
t

K
ĤĤT + IM

)−1
ĤĤT

K

)]

+
σ2
x

K
EH

[
Tr

((
t

K
ĤĤT + IM

)−1
ĤĤT

K

)]
. (32)

Now, based on the result obtained in [22] (Equation (23)), and after
some algebraic manipulations, we can prove that

EH

[
1

K
Tr

(
R

(
t

K
ĤĤT + IM

)−1
ĤĤT

K

)]
=

1

K

Tr
(
R2T (t)

)
(1 + tδ (t))

+O
(
K−1) . (33)

EH

[
1

K
Tr

((
t

K
ĤĤT + IM

)−1
ĤĤT

K

)]
=

Tr (RT (t))

K (1 + t δ (t))

+O
(
K−1) . (34)

By substituting (33) and (34) in (32), we can obtain (25). From (32),
(33), (34), and (25), we can conclude that

E
H,x,z

[Ψ (H)]− α (t) −→ 0. (35)

However, based on the result obtained in [22], the variance of the
terms inside the two expectations in (33) and (34) is O

(
K−2

)
.
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Fig. 1. Performance comparison and the average runtime of the proposed robust estimator compared to other robust and non-robust methods.

Based on this fact and equation (35), and by using Borel-Cantelli
lemma [23], we can easily prove that

E
H,x,z

[Ψ (H)]− E
x,z

[Ψ (H)]
a.s.−→ 0. (36)

Finally, based on (35) and (36), we can obtain (26).

3.1. Using Theorem 2 to obtain λ

The result in Theorem 2 indicates that the average value of the cost
function in (21) converges to (25) at x = x̂. At a certain value of
(21), we can write[

Tr(RT(t))
K(1+tδ(t))

Tr(R)
K
− t Tr(R2T(t))

K(1+tδ(t))

] [σ2
x

σ2
z

]
+ ε =[

1
K
||R

1
2 (y −Hx̂) ||22 + λ

K
||x̂||22

]
, (37)

where ε is an approximation error. Evaluating (37) at multiple
λi, i = 1, . . . , n, yieldsΓ1 (λ1) Γ2 (λ1)

...
...

Γ1 (λn) Γ2 (λn)

[σ2
x

σ2
z

]
+

ε1...
εn

 =

ψ (λ1)
...

ψ (λn)

⇒ Γσ+ε = ψ.

(38)
Now, by solving the following constrained linear LS

min
σ

1

2
||ψ − Γσ||22 subject to σ ≥ 0, (39)

we can obtain estimates σ̂2
x and σ̂2

z , given that n ≥ 2.

Remark 1. The error vector ε is due to the fact that we are equating
the cost function in (21) evaluated at its optimal solution x̂ with
its average value. This will be accurate for high dimensions but
becomes less so as we decrease the dimensions of the problem.
Our main goal here is to facilitates the process of obtaining a pair(
σ̂2
x, σ̂

2
z

)
that closely approximate the signal and the noise statistics.

4. NUMERICAL RESULTS

In this section, we demonstrate the performance of the proposed ap-
proach using numerical simulations. A matrix H ∈ R300×100 with
i.i.d. entries N (0, 1) and a condition number equal to 103 is gener-
ated. The elements of x are chosen to be i.i.d. with [x]i ∼ N (0, 1).
The noise vector z is generated to satisfy Assumption 3 with zg ∼

N (0, 1) and zs being generated from a Bernoulli distribution with
success probability p. The non-zero entries of zs are set to be Gaus-
sian i.i.d. with a variance that is 10 times that of Hx. Different
values of the parameter p, which controls the sparsity of the noise
z, are used in the experiments. The values of λ required in (38) are
chosen to be {1, 2, . . . , 10}×10−2. Performance is evaluated using
the normalized MSE (NMSE) (i.e., MSE normalized by ||x||22).

In Fig 1(a), we compare the performance of the proposed ap-
proach, with λoptimal obtained using the method in Section 3, to that
of the regularized τ -estimator [16] and the regularized S-estimator
when their λoptimal is obtained using exhaustive search. The noise
outlier rate p is set to vary from 0 to 40%. The loss functions of
the proposed approach and the τ -estimator are chosen to be the op-
timal weight functions in [17] with c1 = 1.214, b1 = 0.5, and
c2 = 3.270, while for the S-estimator we use the Turkey’s biweight
loss function in [14] with d = 1.547. The results are obtained over
103 Monte-Carlo trials. From Fig 1(a), we can see that the proposed
approach outperforms other robust methods over all the p range.

In Fig 1(b), we compare the performance of the proposed ap-
proach with the regularized M-estimator and three RLS algorithms:
quasi-optimal, GCV, and L-curve [19]. These results are presented
separately to provide better visualization given that these methods
provide high NMSE. We use the loss function in [18] for the regu-
larized M-estimator. From Fig 1(b), we observe that the proposed
method outperforms all the other methods by offering the lowest
NMSE while the RLS algorithms have the worst performance.

Fig 1(c) compares the runtime of our approach with the best two
benchmarks methods. It is clear that the proposed estimator with
its regularization parameter selection method provides significant
complexity reduction. It should be noted that when the search algo-
rithm is applied to obtain λoptimal for the regularized τ -estimator and
S-estimator, the search is confined to a prespecified feasible range
[λmin, λmax]. Since this information may not be available in reality,
the actual complexity of the search algorithm is worse than what
Fig 1(c) shows.

5. CONCLUSIONS

A new robust regularized estimator based on the τ -estimator is pro-
posed. Tools from RMT are used to obtain the optimal regularizer
that minimizes the MSE of the estimator. Simulations show that the
proposed method provides the lowest MSE among robust and non-
robust benchmark methods.
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