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ABSTRACT

Random sample consensus (RANSAC) is a popular paradigm
for parameter estimation with outlier detection, which plays
an essential role in 3D robot vision, especially for LIDAR
odometry. The success of RANSAC strongly depends on the
probability of selecting a subset of pure inliers, which sets
barriers to robust and fast parameter estimation. Although
significant efforts have been made to improve RANSAC in
various scenarios, its strong dependency on inlier selection is
still a problem. In this paper, we propose to address such de-
pendency in the context of LIDAR odometry by robust object-
aware sample consensus (ROSAC). In the proposed ROSAC,
the sampling strategy is adjusted to preserve object shapes
and a new consensus method is developed based on robust
low-dimensional subspace analysis. It is demonstrated in ex-
tensive experiments that the proposed paradigm works well
in LiDAR odometry, achieving estimation of 3D pose with
superior accuracy compared to RANSAC. Even for the case
of RANSAC failure, ROSAC still achieves up to 67% of im-
provement in accuracy compared to baseline LIDAR odome-
try. Since a partially parallel implementation of ROSAC al-
ready leads to a significant speedup, we believe it can be ex-
tended to other problems of parameter estimation with both
higher accuracy and efficiency.

Index Terms— RANSAC, Low-rank and sparse decom-
position, Robust estimation, LIDAR odometry

1. INTRODUCTION
Random sample consensus (RANSAC) [1] is a famous
paradigm for parameter estimation with outlier rejection,
which has been successfully applied to solve many computer
vision and signal processing problems. In 3D computer vi-
sion, RANSAC is usually adopted with iterative closest point
(ICP) methods [2, 3, 4] to estimate the camera pose while
rejecting outliers. But it produces correct results only with
a certain probability because it depends on the probability
of selecting a subset of pure inliers. Although variants of
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RANSAC have been proposed for various applications [5],
but their improvements upon RANSAC in robustness are very
limited. Since the outlier distribution changes with the sensor
type, the probability of selecting pure inliers is also dependent
on the utilized sensor. It is non-trivial to apply RANSAC to
deal with real data [6], especially for the cases without strict
correspondences such as LiDAR odometry that estimate the
3D pose from range measurements.

It is well-known that LiDAR range measurements are ac-
curate but sparse, especially along the vertical direction (e.g.
16 lines of data per frame). Such spatial sparsity leads to mea-
surement drifts on object surfaces (e.g., a scanning line may
be on a person’s head in the first frame and then the person’s
neck in the next frame). Therefore, the success rate of classi-
cal RANSAC becomes very low and researchers tend to adopt
extra components for handling outliers in LiDAR odometry.
Representative techniques include object detection [7, 8] and
tracking [9, 10, 11]. Although being more robust against mov-
ing objects, these methods inevitably desire more computa-
tions due to the additional components. More importantly,
the strong dependency of selecting pure inliers in RANSAC
remains unsolved.

Robust subspace analysis is an important tool to reveal the
intrinsic characteristics from a data matrix. Representative
algorithms include the truncated robust principal component
analysis (RPCA) [12, 13, 14] that recovers the low-rank sub-
space of the data corrupted by non-Gaussian noise and ran-
dom missing. These algorithms have been successfully ap-
plied to analysis of sequential data such as color videos [15]
and RGB-D (synchronized color and depth) sequences [16].
For the improving subspace analysis by sample consensus
algorithms, there have been several pioneer trials [17, 18].
Moreover, the trials of improving sample consensus by sub-
space analysis are quite limited.

Inspired by the recent advance in robust subspace anal-
ysis, we propose a new paradigm for sample consensus that
does not rely on the selection of pure inliers. In particular, the
samples are divided into several subsets with certain overlap-
ping. A number of model parameters (i.e., rigid transforms
in the case of LiDAR odometry) are estimated using these
subsets individually. Then, every parameter is regarded as a
point in a multi-dimensional space. Based on the observa-
tion that such multi-dimensional points essentially lie on a
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low-dimensional manifold defined by the model parameter,
we perform robust subspace analysis to extract the outliers of
these points, resulting in a number of inlier parameters. The
final parameter is given by averaging all inlier parameters. In
this way, we address the dependency of RANSAC on select-
ing good subsets. Since every subset can be processed indi-
vidually, the proposed paradigm is naturally with the ability of
being implemented in parallel. It is believed that the proposed
paradigm can lead to more efficient solutions to real-time 3D
robot vision using consumer-grade devices. Taking the appli-
cation of LiDAR odometry as an example, we focus on the
estimation of rigid transforms in the rest of this paper.

2. PROPOSED PARADIGM

The main idea of the proposed paradigm is based on two ob-
servations. First, the rigid transforms estimated using dif-
ferent subsets from the same LiDAR frame can be seen as
samples from the same low-dimensional manifold, especially
when the LiDAR device is with rotations and translations of
limited degrees of freedom. Second, the estimated rigid trans-
forms are typically with errors, which can be formulated as
Gaussian-like noise and sparse outliers that can be well han-
dled by robust subspace analysis.

2.1. Overall Pipeline

Similar to RANSAC, the proposed paradigm consists of two
main stages, i.e., sampling stage and sample consensus stage.
Given two frames of range measurements P and P’ with N,
points per frame, we use the following 4 steps for estimating
the rigid transform with sample consensus:

1. Select Ny pairs of subsets from P and P’;

2. Estimate the rigid transform between every subset pair
individually, resulting in NV, rigid transforms TF =
{TF\,TF,,...,TFn,};

3. Determine the outlier rigid transforms from 7'F using
robust subspace analysis;

4. Estimate the final transform by averaging the inlier
rigid transforms from T'F'.

One can see that the proposed paradigm integrates object-
aware sampling and robust subspace analysis. Thereby, we
name it Robust Object-aware SAmple Consensus (ROSAC).
Note that there are two configurations for step 1), respec-
tively refer to the “single-sided” and “double-sided” sampling
strategies. The “single-sided” sampling is to select N; sub-
sets S = {51,52,...,5N,} of n (n < N,) points from P.
Then, the whole frame P’ and S; is considered as one pair of
subset, whose rigid transform is estimated individually. The
“double-sided” sampling is to perform object-aware selection
on both P and P’, resulting in IV; pairs of small subsets, i.e.,
{51,851}, ...,and {Sn, Sk }.

The subset selection in step 1) and the outlier extraction in
step 3) will be described in Sec. 2.3 and Sec. 2.2, respectively.
It should be noted that steps 1 and 2 can be implemented in
parallel for faster calculation. Since NV; can is usually very
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small (e.g. Ny = 20). Such parallel implementation can be
used on devices with either multi-core CPU or low-cost GPU.

2.2. Object-aware Subsampling

Subsampling is a common technique for reducing computa-
tional cost while keeping reasonable scanning fidelity, espe-
cially in the processing of 3D points [19]. Random sampling
and uniform sampling are two commonly used strategies for
selecting subsets, which may not be an ideal choice for Li-
DAR measurements. The main reason is that, different from
the point cloud registration in other scenarios which is dense,
accurate, and even with point-to-point correspondences, Li-
DAR measurements are sparse, noisy, and without any cor-
respondence. More severely, there may be no point-to-point
correspondence between two sequential LiIDAR frames be-
cause the probability of a same point on the object scanned
by the laser twice is very small, especially for the mainstream
LiDAR devices that only have 16, 32 or 64 scanning lines.

In the proposed paradigm, we propose to combine uni-
form sampling with object-aware preservation for sampling
the LiDAR measurements. Two issues are considered in such
combination. First, uniform sampling is the best way of main-
taining the global structure of LiIDAR scans. Second, it is ob-
served that thin objects only occupy limited number of hori-
zontal measurements in LiDAR frames. If uniform sampling
is performed, there will be very few measurements on such
objects, which probably act as outliers and deteriorate the reg-
istration accuracy. Therefore, to avoid such deterioration, we
propose to preserve tiny objects by boundary detection. In
particular, we compute the difference between neighboring
measurements. For two very close boundaries, (i.e., their in-
terval is not larger than /N; measurements), the measurements
between them are always kept in every subset.

2.3. Robust Sample Consensus

With the object-aware subsets S, one can perform any regis-
tration method on S and P’ to estimate N rigid transforms
TF. Then, we divide the i-th rigid transform T'F; into two
parts, i.e., the rotation angles ©; = [9&”,95“,99] and the
translation vector T; = [Tf), Téi),TZ(i)}. By regarding ev-
ery part as one data point in 3D space, we construct two data
matrices

Mo =[0] —©7,0; —6¢,...,0%, —0g] (1

N
o My =[Ty -1y, T, =T, ,....T%, - Ty, (2
where ) N,
GOZEZ;@"’
and

1
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are the mean of matrix columns. Therefore, these matrices
are centralized with respect to the mean of the data points.

By performing low-rank and sparse decomposition (LRSD)
[14] on Mg and My individually, we obtain their low-rank
and sparse components. That is,

{L@,S@} = LRSD(]\/[@,’I‘, T@), (3)

and {Lr,Sr} = LRSD(My,r,71), @)

where Lo and Ly are respectively the low-rank components
of Mg and Mr, Seg and St are respectively the low-rank
components of Mg and My, r is the target rank, 7g is the
threshold of outlier perturbation in Mg, and 77 is the thresh-
old of outlier perturbation in M7. According to our experi-
ence, r = 1 is a reasonable choice for LiDAR odometry. The
parameters 7o and 7 are suggested to be the standard devia-
tion of Mg and M, respectively. If a non-zero value appears
in the i-th column of Sg or S, the i-th rigid transform T'F;
is considered as the outlier. Let {T'F},...,TF,} be the p in-
liers determined after checking the non-zero entries in Sg and
St. Then, the final rigid transform T F™* is given by

1 P
TF* == ZTF (5)
Pio

3. RESULTS

In this section, we conduct experiments on the commonly
used KITTI dataset of odometry [20]. First, a small subset
of the dataset is selected to analyze the components of the
propose paradigm. Then, quantitative evaluations on both ac-
curacy and efficiency are reported to verify the effectiveness
of the propose paradigm.

This paper concentrates on the estimation of rigid trans-
forms. Therefore, we adopt the evaluation metrics the same
as that used in the KITTI dataset. That is, given the ground-
truth (GT) transform matrix 7 € R*** and the estimated one
T, the translation error e; and rotation error eg are computed

At

by
{ e; = arccos(0.5(tr(AR) — 1))

where tr(AR) represents the trace of AR, AR and At are
defined as

(6)

[ AR At )

iy —1
0 1 } =(T)"'T.
It can be seen that the translation error is essentially the root-
mean-square-error (RMSE) and the rotation error is computed
in the angle domain. Thus, the units of the above metrics are
generally meter and radian for translation and rotation, re-
spectively. For the analysis of the proposed sampling strat-
egy, we extract a test subset consisting of 103 pairs of LiDAR
frames in KITTI dataset. The testing results are obtained by
applying the proposed paradigm with classical ICP [21] on
the test subset. The LRSD based sample consensus method is
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used in all tests. Key parameters of the proposed paradigm are
the number of sampling times /N; and the number of points of
every subset V.

3.1. Sampling strategy

For the analysis of the sampling strategies, we empirically
choose N; = 20 and Ny = 0.05N,, and apply random sam-
pling, uniform sampling, and object-aware sampling on the
LiDAR measurements for the estimation of rigid transform.
Table 1 presents the translation error with boldface and un-

Inlier ratio | Random | Uniform | Object-aware
100% 0.0756 0.0665 0.0536
95% 0.0683 0.0622 0.0457
90% 0.0676 0.0653 0.0566
85% 0.0710 0.0696 0.0540

Table 1. Mean translation errors of different sampling strategies for
pose estimation on a subset of the KITTI dataset.

derline indicating the best results in the same row and col-
umn respectively. It is clearly shown that object-aware sam-
pling consistently outperforms other alternatives in the con-
text of LiDAR odometry with sample consensus, regardless
of changing the inlier ratio of ICP. The improvements of es-
timation accuracy of our method upon random sampling and
uniform sampling are up to 33.05% and 24.13%, respectively.
Since it is observed that the propose paradigm achieves nice
performance when the inlier ratio is 95%. We keep such set-
ting in the rest of our experiments.
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Fig. 1. Per frame translation errors on a subset of the KITTI dataset.

Per frame translation errors on the test subset are reported
in Fig. 1. It can be seen that object-aware sampling performs
more stable than other two sampling strategies, especially for
the frames that cause registration failures of other strategies
(e.g., frames #20 to #30). Better robustness is the main reason
of higher accuracy of the proposed paradigm.

3.2. Key parameters

01N, 005N,
N¢\Ns - 2 —

T o) o <5 o o) o s
10 0.0656_| 00030 | 00653 | 00031 | 00477 | 0003 | 00578 | 0.0037
20 - - 00641 | 00031 | 0.0455 | 00034 | 0.0540 | 0.0036
30 - - g g 00447 | 0003 | 00516 | 00036
50 g g g g 00427 | 00034 | 00522 | 00036
100 - - g g 0.0415_| 0003 | 00540 | 00036

Table 2. The performance changes with the key parameters.

Fixing the sampling method as object-aware sampling, we
turn to evaluate its performance changes with the parameters



N; and Ng. Larger N; means more data points and thus bet-
ter accuracy can be expected. The number of points in each
subset IV, is related to N, for the case of sampling without
replacement, which directly affects the execution time of the
whole algorithm. By increasing N; from 10 to 100 and N,
from 0.005N,, to 0.1N,,, we obtain the results shown in Ta-
ble 2. It can be seen that our ROSAC is insensitive to the
parameter changes. The accuracy difference is small when
Ny is fixed. This is because there is a uniform sampling in the
proposed object-aware sampling. The same set of points will
appear for multiple times when N; is greater than N,,/N;. It
is found that given a fixed /Vy, the accuracy is not monotone
changing with N..
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Fig. 2. The relationship between performance and parameters.

To further investigate the effect of N, on the proposed
method, we carefully assess the relationships among N, ex-
ecution time and accuracy on a computer with a 32-core CPU
(Intel Xeon E52620V4). Detailed analysis is shown in Fig. 2,
in which the accuracy and efficiency curves of ICP with
ROSAC are compared with that of classical point-to-plane
ICP. The green curves are obtained by using a simple paral-
lel implementation of the “double-sided” ROSAC ICP based
on the MATLAB “parfor” command, and the red curves are
obtained by original ICP. A speedup of up to 4x brought by
the ROSAC is validated by these curves. From Fig. 2, one
can see the execution time of ROSAC ICP keeps reducing
as N, decreases. Note that such accelerations stop when
Ns/N, = 1/32 because our CPU supports 32 threads at
most, which means that we only implement a partial par-
allelization. It can be expected that more threads or GPU
implementation will lead to higher efficiency. Meanwhile,
the registration accuracy of ROSAC ICP is always higher
than the original ICP, which demonstrates ROSAC can lead
to both higher efficiency and accuracy in LIDAR odometry.

ROSAC ICP RANSAC ICP Original ICP
Sequence
et ep et eg et eg
1 0.3480 | 0.0036 | 1.5431 | 0.0075 | 0.9474 | 0.0046
2 0.0835 | 0.0020 | 0.2590 | 0.0089 | 0.1510 | 0.0021
3 0.0212 | 0.0037 | 0.0593 | 0.0170 | 0.0154 | 0.0036
4 0.0294 | 0.0088 | 0.5878 | 0.0115 | 0.4345 | 0.0087
5 0.0140 | 0.0018 | 0.0263 | 0.0028 | 0.0146 | 0.0017
6 0.0161 | 0.0027 | 0.0507 | 0.0035 | 0.0219 | 0.0026
7 0.0156 | 0.0029 | 0.0234 | 0.0039 | 0.0145 | 0.0028
Average 0.0754 | 0.0036 | 0.3642 | 0.0059 | 0.2285 | 0.0037

Table 3. The translation and rotation errors on the KITTI dataset.
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3.3. Evaluations on KITTI dataset
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Fig. 3. Per frame translation error on sequence #2.
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Fig. 4. Per frame rotation error on sequence #2.

For a comprehensive assessment of our method, we con-
duct quantitative evaluations on the whole KITTI dataset for
LiDAR odometry. For a fair comparison, we use N; = 20
and N, = 0.05N,, for both ROSAC and RANSAC. Estima-
tion errors are shown in Table 3 and the visualization of these
errors on a representative sequence is shown in Fig. 3 and
4. It is shown in Table 3 that RANSAC fails to produce cor-
rect estimation due to the small number of N, while ROSAC
succeeds in greatly improving the translation accuracy and
the rotation stability. To specific, ROSAC achieves improve-
ments up to 67.00% in translation accuracy compared to the
baseline ICP. The superior stability of ROSAC is validated in
the per frame registration errors on sequence #2 of the dataset,
as shown in Fig. 3 and Fig. 4.

4. CONCLUSIONS

In this paper, we have presented a novel paradigm for sample
consensus in the context of LIDAR odometry. The proposed
paradigm is based on the combination of object-aware sam-
pling and low-rank subspace analysis techniques. The pro-
posed paradigm can be seen as a new solution to robust pa-
rameter estimation with outlier rejection. Although the appli-
cation is chosen as LiDAR odometry, the proposed paradigm
is believed to be universal due to the generality of RANSAC.
It would be interesting to investigate special sampling meth-
ods for more scenarios where RANSAC is applicable and find
theoretical bounds for the proposed ROSAC.
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