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ABSTRACT

This paper presents a new algorithm to estimate the num-
ber of sources embedded in a correlated Complex Elliptically
Distributed (CES) noise in the context of large dimensional
regime. The proposed method is a two-steps ones: first the
data covariance matrix is estimated with a robust and con-
sistent estimator exploiting the Toeplitz structure assumption
of the true scatter matrix. Then, after whitening the signal
thanks to the first estimator, the distribution of its Tyler esti-
mator eigenvalues is studied, as in [1]. This allows to derive
a threshold, estimated thanks to the Marchenko-Pastur law,
to separate the eigenvalues corresponding to the noise and
those corresponding to the sources. The number of sources
can therefore be deduced. The proposed method is compared
to classical ones as the Akaike Information Criterion (AIC) or
other algorithms recently developed.

1. INTRODUCTION

The problem of estimating the number of sources, or equiv-
alently the model order, is a recurrent and challenging issue
in a lot of signal processing fields (see e.g., [2], [3] or [4]).
To that end, statistical methods often rely on the estimation
of the covariance matrix eigenvalues. This is the case for in-
stance for the Akaike Information Criterion (AIC) [5] or oth-
ers methods of model order selection [6]. Thereby, with such
methods, the better the covariance matrix estimation is, the
better the number of sources estimation is. In this context of
number of sources estimation, this article introduces new re-
sults when the observations turn to be non-Gaussian and of
large dimension.

Large dimensional regime corresponds to the following
regime: the number of received signals N and the dimension
m tend to infinity at the same rate (see e.g., [7]). For white or
whitened noise, several methods, based on the Random Ma-
trix Theory (RMT) have been proposed to extract information
of interest from the received signals. One can cite for instance
the number of embedded sources estimation [8], the problem
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of radar detection [9], signal subspace estimation [10]. How-
ever, when the additive noise is correlated, some RMT meth-
ods require the estimation of a specific threshold which has no
explicit expression and can be very difficult to obtain [6, 11]
while the others assume that the covariance matrix is known
and use it to whiten the signal.

Concerning non-Gaussian signals, robust methods have
been recently developed based on Complex Elliptically Sym-
metric (CES) distribution. CES distributions belong to a
wide-class of distributions including the Gaussian distribu-
tion, the K-distribution and others, as detailed in [12]. Its
flexibility enables to model a large panel of random signals
and justifies its wide use in signal processing applications for
example in communication applications. To deal with non-
Gaussian data, robust methods adapted to large dimensional
observations [13] have been developed in the case of white
(or perfectly whitened) noise.

To fill this gap, [14] proposed a method that relaxes this
strong assumption thanks to a Toeplitz-based correlation
model. Moreover, this methodology is based on Maronna’s
assumptions [15], that is to say, for well-behaved weighting
functions u(.) appearing in the definition of the covariance
M -estimators. For model order selection, the threshold pro-
posed in [14] depends on the selected function u(.) and
remains quite difficult to derive. This is the case for instance
for the Huber [16] M-estimators.

This article expands former results of [14] to the case of
Tyler [17] M -estimators for correlated CES noise. Note that
Tyler M -estimators do not respect Maronna’s conditions but
provide more flexibility since it is a distribution-free estima-
tor [18]. Moreover, recent works in [1] proved that the eigen-
values distribution of the Tyler M -estimator follows, in the
white CES case, the Marchenko-Pastur distribution [19]. The
main contribution of this article is first to propose a consis-
tent estimator of the covariance matrix for a correlated CES
noise. Then, it aims at providing an estimation of the number
of sources when the signal is constituted of a correlated CES
noise and some additive sources.

This estimation process is shown to be easier than those
proposed in [14]. The proposed method splits into two steps
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as in [14]: the first one is the whitening of the signal with
a good estimated covariance matrix. This estimated whiten-
ing covariance matrix is obtained thanks to a Tyler estima-
tor and a Toeplitz rectification. The second step consists in
estimating the eigenvalues of the Tyler covariance matrix of
the whitened signal and then, it exploits the support of the
Marchenko-Pastur law to find the number of sources in the
signal. These steps are described in the two first parts of this
article. The third part shows a comparison in terms of perfor-
mance between the proposed method, the method proposed
in [14] and AIC through some simulations.

Notations: Matrices are in bold and capital, vectors in
bold. Let X be a square matrix of size s × s, (λ)i(X), i ∈
K1, ..., sJ, are the eigenvalues of X. Tr(X) is the trace of
the matrix X. ‖X‖ stands for the spectral norm. Let A
be a matrix, AT is the transpose of A and AH the Hermi-
tian transpose of A. In is the n × n identity matrix. For
any m−vector x, L : x 7→ L(x) is the m × m matrix de-
fined as the Toeplitz operator: ([L(x)]i,j)i≤j = xi−j and
([L(x)]i,j)i>j = x∗i−j . For any matrix A of size m × m,
T (A) represents the matrix L(ǎ) where ǎ is a vector for
which each component ǎi, 0<i<m−1 contains the sum of the
i−th diagonal of A divided by m. For x ∈ R, δx is the Dirac
measure at x. supp is the support of a set. The notation a.s.−→
means "tends to almost surely". The notation dist stands for
the distance associated to the L1 norm.

1.1. Model and Assumptions

The N observations Y = [y0, ...,yN−1] are made of a corre-
lated CES noise added to p mixed sources. The equation (1)
sets down the model:

yi =

p∑
j=1

ai,j mj +
√
τi C1/2 xi , i ∈ J0, N − 1K , (1)

where the {τi}i∈J0,N−1K are positive random variables
and where X = [x0, ...,xN−1] is the matrix of independant
multivariate m-vectors uniformly distributed on the sphere of
dimension m. Moreover, the m× p matrix M with elements
Mi,j = (M)i,j = (mj)i is referred to as the mixing matrix
and contains the p vectors of the sources. Each element ai,j
of the p×N matrix A corresponds to the amplitude variation
of each source in the received vector.

The matrix C is assumed to be a nonnegative definite
Toeplitz matrix:

C =


c0 c1 ... cm−1
c∗1 c0 ... cm−2
...

c∗m−1 c∗m−2 ... c0

 .

The signal can thus be written as:

Y = M A + C1/2 X T1/2 , (2)

where T is the N × N -diagonal matrix containing the
{τi}i∈J0,N−1K. In the sequel, we will consider the following

assumptions: first, N → ∞, m → ∞ and cN =
m

N
→ c > 0 .

Then µN =
1

N

N∑
i=1

δτi satisfies
∫
τµN (dτ) → 1 almost surely

and 1

N

∑
δλi(C) converges almost surely toward the true

measure ν. We will also assume that max
i

dist(λi(C), supp(ν))

→ 0 and that {ck}k∈[0,m−1] are absolutely summable coeffi-
cients, such that c0 6= 0 .

The problem considered here is the estimation of p, the
number of sources. Next section presents the main contribu-
tion of this article.

2. RESULTS

2.1. Signal Whitening

The first step of the proposed algorithm is to whiten the signal
with a consistent estimation of C, the scatter matrix of the
CES noise. The proposed estimator is a Tyler M -estimator of
the scatter matrix Ĉ enforced to be Toeplitz-structured with
the operator T

(
Ĉ
)

. The Tyler M -estimator Ĉ is defined as
the unique solution of [20]:

Σ =
m

N

N∑
i=1

yiy
H
i

yH
i Σ−1yi

. (3)

This equation requires an iterative approach to compute
Ĉ as the final value of Σ. Note that the yi contain also the
sources. The consistency of T

(
Ĉ
)

is proven thanks to the
following theorem:

Theorem 1 (A consistent estimation of C). Under the prior
assumptions, we have the following convergence:∥∥∥T (Ĉ

)
−C

∥∥∥ a.s.−→ 0 . (4)

Proof. Let Ŝ be the Sample Covariance Matrix (SCM) that is

Ŝ =
1

N
X XH . Then:∥∥∥T (Ĉ
)
−C

∥∥∥ ≤ ∥∥∥T (Ĉ
)
− T

(
Ŝ
)∥∥∥+

∥∥∥T (Ŝ
)
−C

∥∥∥
(5)

Moreover, it is proven in [14] that
∥∥∥T (Ŝ

)
−C

∥∥∥ a.s.−→ 0.

Since [1] shows that
∥∥∥Ĉ− Ŝ

∥∥∥ a.s.−→ 0 and as T is a lin-

ear operator, it appears that
∥∥∥T (Ĉ

)
− T

(
Ŝ
)∥∥∥ and that∥∥∥T (Ĉ

)
−C

∥∥∥ a.s.−→ 0.

The consistency of this estimator is shown on Figure 1
where the {τ}i∈J1, NK are inverse gamma distributed. The

4490



rate of the convergence is relatively slow but it is possible
to enhance it with banding or tapering (see for example [21]).
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·104
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N

Consistency of T (Ĉ)

‖T (Ĉ)−C‖

Fig. 1. Consistency of the proposed estimator of C, N ∈ J5, 10000K,
c = 0.7, {τ}i∈J1, NK following an inverse gamma distribution

Let us note Č the estimator T
(
Ĉ
)

. The signal can be
whitened as following:

Ŷw = Č−1/2Y = Č−1/2MA + Č−1/2C1/2XT1/2 , (6)

with Ŷw = [ ŷw1, ..., ŷwN ].

2.2. Estimation

The signal being whitened, it is now possible to apply a Tyler
M -estimator in order to threshold its eigenvalues. Let Ŵ
denote a Tyler estimation of the “white” scatter matrix, that
is, Ŵ is the unique solution if it exists of:

Σw =
m

N

N∑
i=1

ŷwi ŷH
wi

ŷH
wi Σ−1w ŷwi

. (7)

Let us define Ŝw = 1
N XXH . In order to threshold its

eigenvalues and estimate the number of sources, Theorem
2 enables to choose the threshold as the right edge of the
Marchenko-Pastur law support [19]:

Theorem 2 (Convergence of Ŵ). Under same assumptions
as previously, ∥∥∥Ŵ − Ŝw

∥∥∥ a.s.−→ 0 . (8)

Proof. It follows the one of Theorem 2 in [14]. Let W̌ de-
note the Tyler M -estimator of Yw = C−1/2 M A + X T1/2

with Yw = [yw1, ..., ywN ] , i.e., W̌ =
m

N

N∑
i=1

ywiy
H
wi

yHwi W̌
−1 ywi

.

Since Ŵ =
m

N

N∑
i=1

ŷwi ŷ
H
wi

ŷHwi Ŵ
−1 ŷwi

, if we replace ŷwi by

Č−1/2C1/2ywi , 0 ≤ i ≤ N , one obtains:

C−1/2Č1/2ŴČ1/2C−1/2 = (9)

m

N

N∑
i=1

ywiy
H
wi

yHwi

(
C−1/2Č1/2ŴČ1/2C−1/2

)−1

ywi

,

which leads to:

Ŵ = Č−1/2C1/2W̌C1/2Č−1/2 . (10)

The equation (8) can be rewritten as:∥∥∥Ŵ − Ŝw

∥∥∥ ≤ ∥∥∥Ŵ − W̌
∥∥∥+ ∥∥∥W̌ − Ŝw

∥∥∥ . (11)

Moreover, it is proven in [1] that
∥∥∥W̌ − Ŝw

∥∥∥ a.s.−→ 0. Con-
cerning the first term, it can be rewritten as:∥∥∥Ŵ − W̌

∥∥∥ ≤ ∥∥∥Č−1/2C1/2W̌C1/2Č−1/2 − W̌C1/2Č−1/2
∥∥∥

+
∥∥∥W̌C1/2Č−1/2 − W̌

∥∥∥ . (12)

After left and right factorization, one obtains:∥∥∥Ŵ − W̌
∥∥∥ ≤ ∥∥∥Č−1/2C1/2 − Im

∥∥∥ ∥∥W̌∥∥(∥∥∥C1/2Č−1/2
∥∥∥+ 1

)
.

As ‖C‖ has a bounded support,
∥∥Č∥∥ has a bounded sup-

port too thanks to Theorem 1. Moreover, this theorem proves
the consistency as

∥∥C− Č
∥∥ a.s.−→ 0 and this ensures the proof.

Thereby, as the distribution of the eigenvalues of Ŝw con-
verges in law toward the Marchenko-Pastur distribution [19],
the scatter matrix eigenvalues distribution converges in law to
the Marchenko-Pastur law, if some sources have sufficiently
high SNR, it is possible to detect them. The right edge of the
Marchenko-Pastur law, that is (1 +

√
c)

2, can be chosen to
threshold the eigenvalue distribution of Ŵ. The number of
eigenvalues upon the threshold corresponds to the number of
sources in the signal, and is denoted by p̂.

2.3. Simulations

In order to enligthen these theoretical results, Figure 2 shows
that the eigenvalues distribution of the estimated scatter ma-
trix Ŵ follows the Marchenko-Pastur distribution. On this
figure, the {τ}i∈J1, NK are inverse gamma distributed. The 4
sources with SNR=10 dB present in the signal can be detected
since 4 eigenvalues are found upon the Marchenko-Pastur dis-
tribution support, even if the SNR is low.

Then, Figure 3 shows the eigenvalues distribution with the
same parameters as in Figure 2 but for a Fixed Point estima-
tion of C noted FP, directly defined as the unique solution

of Σ =
1

N

N∑
i=1

u
(
yHi Σ−1 yi

)
yi y

H
i build with the function

u(x) =
1 + t

t+ x
, t = 0.1 and compared to the Marchenko-

pastur law. As expected, this distribution does not follow the
Marchenko-Pastur law and the chosen threshold is no more
relevant. To find a correct threshold for this estimator, it
is necessary to whiten the signal first and then calculate a
more complicated threshold, without explicit expression, as
deteiled in [14].
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Eigenvalues distribution of Ŝw

Fig. 2. The Marchenko-Pastur distribution and the eigenvalues distribution
of Ŵ, 4 sources, SNR=10 dB,N = 2000,m = 900, c = 0.7, {τ}i∈J1, NK

are inverse gamma distributed.
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Fig. 3. 4 sources, N = 2000, m = 900, {τ}i∈J1, NK are inverse-gamma
distributed.
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Fig. 4. 4 sources, N = 2000, m = 900, {τ}i∈J1, NK are inverse-gamma
distributed.
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Fig. 5. 4 sources, N = 2000, m = 900, {τ}i∈J1, NK are Student-t
distributed.

The number p̂ of sources detected in the signal is plotted
on Figure 4, for different SNR. Our method, denoted TylTER,
is compared to the method of [14] noted FPTER, and to the
AIC method. The true number of sources is also plotted on
the Figure. The scale is in logarithm. The AIC method over-
estimates the number of sources as our method finds the true
number of sources from a SNR= 20dB. The method FPTER
begins to find sources for higher SNR than TylTER. Other
criterions adapted to colored noise give results similar to the
AIC method, as for exemple the method of [22].

On Figure 5 are drawn the same results but for the
{τ}i∈J1, NK Student-t distributed. As expected, the proposed
method still detects the sources for correct SNR. The results
are almost the same except that the SNR required for detect-
ing sources is higher for the methods TylTER and FPTER.
Moreover, the FPTER method detects sources for a higher
SNR than for the distribution of the τi in Figure 4. Indeed, in
Figure 4, the chosen function u for FPTER is the optimal one
for the τi. As the τi are slightly different but the function u
is the same, the method FPTER is still robust but need higher
SNR than TylTER to detect all the sources. These results are
very promising and encourage the application of the proposed
method to a large panel of signals.

3. CONCLUSION
A new robust algorithm has been proposed in order to esti-
mate the number of sources in a signal. The algorithm con-
sists first in whitening the signals and then in estimating the
scatter matrix eigenvalues distribution. Simulations show the
efficiency of the method, even if the noise is different from
what expected. Two major results of this paper are first that
this algorithm is derived for correlated CES noise in large di-
mensional regime and secondly that it proves it is no longer
necessary to determine a complicated threshold as in [14]: the
right edge of the Marchenko-Pastur law support can simply be
used. Thereby, independently of the τi distribution, the pro-
posed threshold does not require any a priori on the noise.
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