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ABSTRACT

In this paper, we address the problem of estimating a noisy, in-
complete time series of a dynamical system with an unknown
state evolution. The technique that we will present is trans-
formed spiked covariance completion (TSCC), a matrix com-
pletion method for signal estimation. This method exploits
the spiked covariance model of the underlying signal to de-
velop a linear estimator that is resilient to noise. We discuss
the conditions in the signal model for which this technique
is applicable and compare this method against other state-of-
the-art time series estimation techniques with a numerical ex-
ample. Our algorithm gives estimates that are more robust to
noise in comparison to the current state-of-the-art techniques
that address this same estimation problem.

Index Terms— Matrix Completion, Time Series Estima-
tion, Singular Spectrum Analysis, Denoising

1. INTRODUCTION

The problem of estimating a noisy, incomplete time series of
an unknown dynamical system is pervasive in applications
ranging from predicting weather patterns [1] to understand-
ing trends in the global economy [2]. In these application
domains, we wish to estimate a true signal (perhaps temper-
ature or GDP) based off some measurement data that may be
partially missing in addition to contamination by noise. In
the field of space remote sensing, radiance data collected by
space-borne sensors often contains incomplete data due to the
sampling periodicity of the spacecraft and sensor malfunc-
tions. In addition, the total signal counts collected at a de-
tector usually is small due to the short integration time of the
sensor. In this domain, it is quite typical to have SNRs < 10
dB. The observed data represents a dynamical system, where
the current state is characterized by some state evolution that
is unknown. This paper is concerned with the problem of
recovering the state of a system from noisy, incomplete mea-
surements with no prior information of the state evolution.
Traditional methods for estimating time series usually in-
volve the use of Dynamic Linear Models. These methods of-
ten use a Kalman Filter (KF) to estimate a signal from noisy
measurements. For high dimensional cases, the Ensemble
Kalman Filter in [3] is used. The KF provides optimal state
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estimates in the sense that there is minimum mean square er-
ror between measurements and estimated measurements. The
classical KF is only applicable in cases where the state transi-
tion matrix of the system is known.

Another class of time series estimation techniques assume
that the dynamics of the system follow a parametric model. In
these methods, given a sequence of time series measurements,
a linear model for the true signal is learned and is used in
the estimation process. In [4], the estimation technique, tem-
poral regularized matrix factorization (TRMF), performs ma-
trix factorization via methods in [5] on a data matrix (vector-
ized columns of measurements) to find feature and temporal
matrices, where the temporal matrix is modeled as a autore-
gressive process. By approximating the original data matrix
as the multiplication of two matrices, this method effectively
denoises the columns of the original data matrix in addition
to imputing any missing values. This technique effectively
converts a linear estimation problem with a noisy, incomplete
signal into a matrix completion problem.

Matrix completion is a class of problems where measure-
ments are put into a matrix and the missing entries of the ma-
trix are filled in according to some desired structure of the
matrix. For example, one may desire the estimated matrix to
have a low rank structure or some minimum spectral norm.
Typically, these algorithms work by estimating the singular
values and the left/right singular vectors of a partially ob-
served matrix and then minimizing the Frobenius norm error
between the estimated and the observed entries. In general,
matrix completion techniques assume that the columns of the
matrix are independently and identically distributed (iid) ac-
cording to some distribution. State-of-the-art techniques such
as ones used in [6, 7, 8] impute values into the matrix with
these assumptions. Other methods, e.g. [9], set the esti-
mation of a partially observed matrix as the minimization
of the nuclear norm of its estimate. These techniques have
high reconstruction accuracy but do not incorporate any tem-
poral dependencies in the columns of matrices. In addition,
these techniques are often employed in recommendation sys-
tems, where the measurement noise is either very low or non-
existent. In this paper, we will introduce Transformed Spiked
Covariance Completion (TSCC), an estimation technique that
will exploit the spiked covariance model of a time-lagged em-
bedding of observations. The method is a non-parametric es-
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timation approach that initially converts the time series obser-
vations into a trajectory matrix via time-lagged embedding in
[10] to capture the underlying dynamics. Subsequently, the
assumption that the underlying signal lies in a low dimen-
sional linear subspace is exploited to determine the empirical
Best Linear Estimator [11]. As a result, we can form a lin-
ear estimator to truncate and shrink the singular values of the
trajectory matrix similar to methods in [12, 11] to estimate
the entries. In this technique, we do not perform estimation
by assuming any state evolution model. We show that this
technique provides accurate recovery under noise and miss-
ing entries and is computationally more efficient than other
existing methods. In section 2 and 3 , we discuss the signal
model and the details of the proposed method. In section 4,
we will present numerical experiments that demonstrate the
superior reconstruction accuracy of the TSCC method over
the other mentioned estimation techniques.

2. THE SIGNAL MODEL

The model for this signal estimation problem considered for
this paper is:

Xipi=FXs+w; Yi=AX+¢ (1

We consider a linear dynamical system whose true state is
represented by feature vector X; in RY and whose dynamics
are captured by the state transition matrix F;. Y; is a mea-
surement vector in RY, containing data gathered by some
sensor. A; is a diagonal matrix in RV>*Y with entries of 0
or 1 on the diagonal. A; is referred to as an observation ma-
trix as it maps the true state X; to the observation Y;. In the
case with missing entries, we model A; as a diagonal ma-
trix, with values of 0 or 1 on the diagonal. Both observation
noise €; and process noise w; are assumed to be additive white
Gaussian noise. In our estimation technique , we do not as-
sume the knowledge dynamics F;.The multivariate time se-
ries [Yp, Y1, ..Yr_1] forms a matrix of size N x T and its true
state is X = [Xo, X1,..X7_1]. Our goal is to estimate X
from Y.

3. PROPOSED METHOD

We develop a non-parametric and non-iterative method to find
a linear estimator X based on Y under some assumptions of
the structure of X.

3.1. Trajectory Matrix Formation

In our approach, we form a trajectory matrix Z from the
columns of Y and obtain the following matrix:

Yo Y .. Yy
7 Y1 YL Y1 2
Y, Ys

The trajectory matrix, Z, is a block Toeplitz matrix of di-
mension (NL) x (' — L+ 1) where N is the dimension of a
single observation and L is the number of lagged observation
vectors Y;. We can also declare matrix () with columns Q); to
be the corresponding trajectory matrix of X. These trajectory
matrices are one class of delay embeddings that are derived
from dynamical system theory [13, 14, 15, 16]. By represent-
ing the set of observations as the delayed versions of itself,
the embedding can capture the predictable modes of the dy-
namical system as seen in Taken’s embedding theorem [10]

For the case of Singular Spectrum Analysis (SSA) where
A; is an identity matrix with the assumption that @ is low
rank, @) is determined by a rank r approximation of Z with
proper shrinkage of singular values.

Q=" nlor)urvy) 3)
k=1

We see that Q follows a block Toeplitz structure. Diagonal
averaging of () is applied to obtain the final estimate of X.

N 1 N . .
X, = 7 Zij’k where k—j =1 (@)
s

Here, we sum over the jth lagged vector at time k for 0 <
J<L—-1and0<k<T-1L

In the problem with missing entries, A; is not an identity
matrix. In addition A; is not full rank therefore we cannot
take its inverse. If we perform the procedure above, it will
not provide a good estimator of X due to the missing entries
and noise. (see Fig. 1). In the following subsection, we will
describe a statistical method to estimate X .

3.2. Linear Estimation with Spiked Covariance Model

In Eq (1), we assume in the signal model that our observation
is a linear transformation of the true signal with additive white
Gaussian noise ¢;. To impute and denoise the entries of Z,
we can write an estimator similar to the empirical Best Linear
Predictor (EBLP) in [11] that can leverage this assumption in
estimation. In the case that the noise is not Gaussian, this esti-
mator can be modified by simple whitening techniques shown
in [11].

We denote by A; the truncation matrix for each column Z.
This matrix is of size NL x N L and is a diagonal matrix with
values of 1 or 0. The additive white Gaussian noise after time-
lagged embedding is denoted by €;. Following the procedure
in [11], we compute the diagonal normalization matrix,

T—L+1

> AAL 5)

We have /L/LT = M + E; where FE; is the deviation of /L/LT
from the ensemble mean. In the high dimensional limit, i.e.,

1

M=——-:
T-L+1
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NL — 00, T—L+1— 00, and TiViLLH — 7, the operator
norm of the matrix with rows \/% vanishes. Therefore,

we can write B; as:
B;=A]Z;=MQ; + E:Q; + A & ~ MQ; + A& (6)
Because M is full rank, we can compute
Bi=M"'Bi~ Qi+ M 'AJE @)

The additive white Gaussian noise €; is linearly transformed
to M _1121;&'1-, therefore, on the right hand side of Eq. (7), the
true signal is contaminated by colored noise. We use an em-
pirical best linear estimator in [11] to recover @); from B,
In signal processing, the best linear predictor is also known
as Wiener Filter. We obtain the singular values o and the
singular vectors uy, vy of B. We truncate and shrink the sin-
gular values of B using random matrix theory and generalized
Marcenko Pastur distribution [17]. The singular values after
shrinkage are denoted by A\ and the estimated () is,

Q=> vy ®)

k=1

We obtain an estimate of X; by diagonal averaging Q accord-
ing to Eq. (4).

3.3. Computational Considerations

In addition to higher accuracy, the TSCC technique can be
a faster algorithm when compared to TRMF. The complexity
for TSCC is O(min(LN, T — L+1)? xmax(LN,T—L+1)).
Like in the signal model, N is the dimension of the state vec-
tor, T" is the number of measurements, and L is lag parameter
for the trajectory matrix. This complexity comes mainly from
the fact that EBLP performs an SVD with many other O(NT')
calculations in generating the shrinkage coefficients.

TRMF is an iterative algorithm whose single update com-
plexity for each iteration is O(NTk? + L(T — L + 1)k? +
(L3 4+ TL?)). Here the variables k and L respectively repre-
sent the latent dimension and the lag parameter (of the autore-
gressive model). Note that the complexity is the sum of three
terms. TRMF decomposes a data matrix to two matrices that
are constrained by an optimization problem that minimizes
the Frobenius norm error between the observations and the
approximation and the model error [4]. It is important to note
that as the dimensions of the matrix increases, the number of
iterations increase.

Since TRMF assumes a model for the dynamical system,
to properly find its factorization, one would need to search
through various model parameters, namely &k and L to best fit
the observations. TSCC, a non-iterative algorithm, can po-
tentially have a better complexity compared to TRMF. The
TSCC complexity is dominated by a SVD operation; new

algorithms like the one presented in [18] show that a ran-
domized SVD for the low rank approximation is linear with
O(IMN) where [ is slightly larger than rank r of the matrix.
Potentially, the incorporation of this algorithm into the cur-
rent TSCC framework can lead to a complexity that is faster
than TRMF.

4. NUMERICAL EXPERIMENTS

4.1. Synthetic Data Generation

To compare our technique against the current, state-of-the-art,
we generate synthetic data to control noise variation. We first
generate two matrices H in RV** and G in R**Z. These
matrices are drawn from a zero mean, unit variance normal
distribution. We then generate a state transition matrix W
whose size is the same as G this matrix is also drawn from the
same zero mean, unit variance normal distribution. GG can be
thought of as a collection of L k-length vectors. The L + 1"
vector in the collection can be calculated by

L-1
Gi=) WGi ©)
t=0

Here W, is the diagonal matrix formed from the ¢ column
of W and the G;_, is the ¢ lagged k-length vector in G. Us-
ing this model, we can generate an arbitrary size sequence of
vectors G.

The resulting data matrix that we will use in these experi-
ments would be generated by the simple multiplication X =
FG. The clean signal is stored in X. To simulate noise, we
simply add a normal noise vector of zero mean and some de-
viation ¢ to the clean signal. We vary ¢ throughout our ex-
periments.

4.2. Comparison of Methods

In these experiments, we compare four methods. The first
method we consider is TRMF as seen in [4]. TRMF performs
time series estimation via matrix completion under the au-
toregressive assumption. The second method we examine is
direct estimation of matrix M with EBLP. The third technique
is our TSCC technique detailed in section 3. The fourth tech-
nique is the standard SSA technique in [19]. It should be
noted that EBLP is a general algorithm that estimates M on
the basis of a spiked covariance model. In TSCC, estimation
is done on a time-lagged embedding, which is restricted to
Toeplitz block matrices.

As input to each technique, we feed in a noisy data ma-
trix Y generated from the methods presented in section 4.1.
For TRMF, we set the number of iterations to 10, the point
where the algorithm converges. The simulated data has 50
state features and 250 time samples for N and 7T’ respectively.
We first generate 100 clean data matrices (no noise). For
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each of the clean data matrices, we form a new noisy data
matrix by adding Gaussian Noise vectors with deviations of
0.1,0.3,0.5,0.8 and 1.0. In total, we have 600 matrices ex-
hibiting a unique level of noise. To simulate missing data,
we replace 20% of the entries of ¥ from each column in the
generated data matrix with zeros. We apply the mentioned
estimation techniques on the data matrices and evaluate the
error, via the relative Frobenius Norm Error defined as:

_ X~ Xl

Err = (10)
1 X]|r

In fig. 1, we display the clean data matrix, which con-
tains the noise-less entries of the matrix before the addition
of Gaussian noise and the removal of data. The reconstructed
matrices from TRMF, SSA, and TSCC are displayed as well
in the four panel plot. In this particular figure, the noise devi-
ation was 0.8.
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Fig. 1. Estimations for Noise Deviation = 0.8

Visually, the TRMF and the TSCC methods capture the
structure of the dynamics when compared to the clean data.
The EBLP method by itself is not robust to missing data for
this example; this is seen with the striation through temporal
axis of the matrix where data is missing. These striations are
also seen in the vertical direction of the TRMF figure. TSCC
performs better than EBLP by reforming Y as a trajectory
matrix. TSCC then has increased estimation accuracy due the
mode capture capability of the embedding.

In our experiments, the average compute time was calcu-
lated by dividing the time taken to estimate the matrices over
the number of data matrices. The average compute time was
294 ms for TRMF, 56 ms for EBLP, and 64 ms for TSCC on a
3.3 GHz Intel i7 processor. Experimentally, TSCC performs
faster than the state-of-the-art TRMF.

Comparing these methods across various levels of noise,
we see that TSCC outperforms TRMF in all cases of noise
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Fig. 2. Reconstruction Accuracy vs. Noise Level

levels. This is seen in fig. 2 where reconstruction accuracy
versus the noise deviation is plotted for all three techniques.

4.3. Analysis of Results

This experiment clearly demonstrates the estimation capabil-
ity of TSCC for the signal model in (1). We see that TSCC has
superior denoising ability as the linear estimator used can find
optimal shrinkage coefficients to separate noise from signal.
TSCC also proves effective at matrix completion with a time
series dataset. In addition, by using a delayed embedding like
the trajectory matrix, we can more easily generalize the types
of dynamical systems that we want to estimate.

It is surprising to note that TRMF fails to properly esti-
mates the parameters of the time series even though the syn-
thetic data generated was modeled in an autoregressive fash-
ion. Using a non-parametric method like TSCC allows flexi-
bility in estimating the modes of the dynamical system.

5. CONCLUSION

For the problem of estimating the true, underlying signal
from observations of a dynamical system, we present TSCC,
a method to reconstruct the time series from the partial mea-
surements. We evaluate this technique against the state-of-
the-art technique TRMF and demonstrate that our proposed
method is more robust to noise in addition to having better
computational complexity with a numerical example. The
main advantage of our technique is that we can represent a
multi-variate time series as an embedding whose noise co-
variance follows a spiked covariance model, allowing us to
develop a linear estimator that is effective at denoising and
matrix completion.
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