
CROSS-VALIDATED BANDWIDTH SELECTION FOR PRECISION MATRIX ESTIMATION

Jun Tong, Jiangtao Xi, Yanguang Yu and Philip O. Ogunbona

Faculty of Engineering and Information Sciences
University of Wollongong, Wollongong, NSW 2522, Australia

ABSTRACT

Inverse covariance matrix, a.k.a. precision matrix, has
wide applications in signal processing and is often estimated
from training samples. The quality of estimation can be poor
when the sample support is low. Banding/tapering are effec-
tive regularization approaches for covariance and precision
matrix estimation but the bandwidth must be properly cho-
sen. This paper investigates the bandwidth selection problem
for banding/tapering-based precision matrix estimation. Ex-
ploiting a regression analysis interpretation of the precision
matrix, we design a data-driven cross-validation (CV) method
for automatically tuning the bandwidth. The effectiveness of
the proposed method is demonstrated by numerical examples
under a quadratic loss.

Index Terms— Banding, cross-validation, precision ma-
trix, regression analysis, tapering

1. INTRODUCTION

Inverse covariance matrix, a.k.a. precision matrix, is used
extensively in signal processing applications, such as filter-
ing, beamforming, and correlation analysis [1, 2, 3]. In prac-
tice, precision matrix may be estimated from training sam-
ples. It is known that sample covariance matrix (SCM) is
ill-conditioned and even singular when the number of train-
ing samples is not much larger than the dimensionality of
the signal. In this case, a precision matrix constructed by
directly inverting the SCM, referred to as sample precision
matrix (SPM) below, may suffer from significant errors.

Regularization techniques, such as shrinkage [4, 5, 6],
banding [7], and tapering [8], have been widely studied for
covariance matrix estimation. Regularization generally im-
poses a priori assumptions on the structure of covariance ma-
trix, and thus reduces the number of free parameters to be
estimated. By properly tuning the regularization parameter
for a good tradeoff between bias and variance, an improved
covariance matrix estimate can be achieved, which can be
subsequently inverted to produce a precision matrix estimate
which improves SPM. Regularization can also be applied to
the precision matrix itself for directly estimating the precision
matrix from the training samples [9, 10, 11], which may out-
perform the approach based on the inversion of a regularized

covariance matrix.
In order to optimize the performance of regularization-

based precision matrix estimation, parameters, such as shrink-
age factors [6] and bandwidth [7, 8], must be tuned properly.
Data-driven methods that do not require a priori knowledge
about the data distribution are often preferred [4, 7, 12, 13,
14]. However, most existing works focus on covariance ma-
trix estimation. A regularization parameter optimized for co-
variance matrix estimation does not necessarily perform well
for precision matrix estimation. This motivates the study of
parameter tuning for optimizing precision matrix estimation.
For shrinkage estimators, [15], [16] and [17] recently pro-
posed solutions based on random matrix theory (RMT), but it
is unclear how to extend their results to more general forms
of regularization such as banding [7, 9] and tapering [8].

This paper introduces a simple method for choosing the
bandwidth for precision matrix estimation based on band-
ing/tapering. We follow the classical cross-validation (CV)
principle [18, 19], which generally requires a proper choice
of prediction error as the performance metric. Exploiting a
regression analysis interpretation of the precision matrix, we
propose an easy-to-compute, distribution-free metric for the
CV. Numerical results show that the proposed technique can
approach the oracle choice that minimizes a quardratic loss
of the estimation.

2. CROSS-VALIDATED BANDWIDTH SELECTION

2.1. Precision matrix estimation

Consider an N -dimensional signal y with mean zero. Its co-
variance matrix is defined as Σ = E{yy†}, where E{·} de-
notes expectation and † conjugate transpose. The precision
matrix is defined as Ω , Σ−1. Both Σ and Ω have extensive
applications in statistical signal processing and are often es-
timated from training samples. Suppose we have T training
samples and let yt be the t-th sample. The sample covariance
matrix (SCM) is then computed as

Σ̂ =
1

T

T∑
t=1

yty
†
t . (1)
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If the SCM is nonsingular, the sample precision matrix (SPM)
is computed as

Ω̂ = Σ̂−1. (2)

When the sample size T is not much larger than the dimen-
sionality N , the SCM and SPM may suffer from significant
errors.

Regularization techniques such as banding and tapering
[7, 8, 9] have been suggested to improve the accuracy of co-
variance matrix estimation and may be generalized to preci-
sion matrix estimation in different ways. We take the tapering
design as an example. With a bandwidth K, we can generate
from SCM the following tapered covariance matrix estimate
[7]

Σ̂K = Σ̂�BK , (3)

where � denotes element-wise product and BK is defined as
[8]

[BK ]i,j =


1, for |i− j| ≤ Kh

2− i−j
Kh

, for Kh < |i− j| < K

0, for |i− j| ≥ K
, (4)

where Kh , K/2. Note that the bandwidth K specifies the
design.

A method for estimating the precision matrix is to directly
invert the tapered covariance matrix estimate Σ̂K :

Ω̂
(1)
K = Σ̂−1K . (5)

The performance of the resulting precision matrix estimate
depends critically on the bandwidth K. It is thus a funda-
mental issue to choose a proper bandwidth. Note that Ω̂

(1)
K

is generally not banded and the bandwidth K here actually
refers to the bandwidth of the corresponding Σ̂K .

2.2. Automatic bandwidth selection

We now introduce a CV method that exploits a regression in-
terpretation of the precision matrix. Let us partition the en-
tries of the signal vector y as

y =

[
y1

y∼1

]
, (6)

where the lengths of y1 and y∼1 are 1 andN−1, respectively.
Accordingly, let us partition the covariance matrice of y as

Σ =

[
σ11 σ†1
σ1 Σ∼1

]
, (7)

where σ11 , E{y1y∗1}, σ1 , E{y∼1y∗1}, and Σ∼1 ,
E{y∼1y†∼1}. The precision matrix is then computed as

Ω , Σ−1 =

[
ω11 ω†1
ω1 Ω∼1

]
. (8)

From the matrix inversion lemma, it can be shown that

ω1 = − 1

σ11 − σ†1Σ
−1
∼1σ1

Σ−1∼1σ1, (9)

ω11 =
1

σ11 − σ†1Σ
−1
∼1σ1

. (10)

Therefore, from ω11 andω1 of the precision matrix Ω, we can
construct an (N − 1)× 1 vector

w1 , − 1

ω11
ω1. (11)

It can be easily seen that

w1 = Σ−1∼1σ1 (12)

gives the coefficients for regressing y1 on y∼1 and is the lin-
ear minimum mean squared error (LMMSE) estimator for es-
timating y1 from y∼1.

The above interpretation links the precision matrix to re-
gression analysis of the data. This has been exploited for de-
riving regularized precision matrix estimates. Given the train-
ing data, one can estimate Ω by conducting a regression anal-
ysis of the training samples. Constraints on the regression
coefficients can be imposed to obtain different regularized es-
timators [11, 20]. In this work, we exploit the above regres-
sion interpretation for determining the optimal bandwidth for
the regularized precision matrix estimation. The rationale is
that, if we have a good estimate Ω̂ of the true precision matrix
Ω, then from it a linear predictor constructed as (12) (with Ω
replaced by Ω̂) should lead to a small error ξ1 of predicting
y1 from y∼1, where

ξ1 , y1 −w†1y∼1 (13)

is obtainable from the training data and the first column of the
estimate Ω̂ of the precision matrix.

We can generalize the above regression analysis for other
entries of y. For an arbitrary n, it can be shown that the esti-
mator for estimating yn from all the other entries can be found
from the n-th column of Ω as

wn = − 1

ωnn
ωn, (14)

whereωn denotes the n-th column of Ω with its n-th entry ex-
cluded. The corresponding estimation error is then computed
as

ξn = yn −w†ny∼n, 1 ≤ n ≤ N. (15)

We propose to use the above estimation errors to construct
a performance metric for choosing the bandwidth K in a CV
manner. In the time domain, the total training data Y is split
into two disjoint subsets, i.e., Y(∼i) and Y(i). The training
subset Y(∼i) is used for constructing the predictors {wn} in
(14) from a regularized precision matrix estimate Ω̂

(i)
K with
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bandwidth K. The validation subset Y(i) is used for evaluat-
ing the quality of precision matrix estimation using the esti-
mation error {ξn} in (15). The total estimation error will then
be used for choosing the best bandwidth as

K∗ = argmin
K

J(K), (16)

where

J(K) =

I∑
i=1

N∑
n=1

∥∥∥y(i)
n −w

(i)†
K,nY(i)

∼n

∥∥∥2
F
, (17)

y
(i)
n denotes the n-th row of Y(i), Y

(i)
∼n corresponds to the en-

tries of Y(i) for predicting y
(i)
n , w

(i)
K,n denotes the estimator

for estimating the n-th entry of y constructed using the train-
ing subset and bandwidth K, and ‖·‖F denotes the Frobenius
norm. In (17), we have assumed that the training data Y is
split into (Y(∼i),Y(i)) for I times. Summarizing, the CV
cost is given by

J1(K) =

I∑
i=1

N∑
n=1

∥∥∥∥∥y(i)
n +

1

ω̂
(i)
K,nn

ω̂
(i)†
K,nY(i)

∼n

∥∥∥∥∥
2

F

. (18)

A grid search of K can be conducted to choose the minimizer
of J(K) as the optimal bandwidth. It can be shown that the
performance metric (17) can be rewritten as

J1(K) =

I∑
i=1

∥∥∥[DΩ̂
(i)
K

]−1Ω̂
(i)
K Y(i)

∥∥∥2
F
, (19)

where D
Ω̂

(i)
K

denotes the diagonal matrix whose diagonal en-

tries are the same as those of Ω̂
(i)
K .

The above bandwidth selection method is based on the re-
gression analysis of the original signal y. Alternatively, we
can consider a treatment similar to generalized cross valida-
tion (GCV) [19]. Instead of conducting the regression analy-
sis of the entries of y, we can consider the regression analysis
of the linearly transformed signal

y′ = V†y, (20)

where V = UF, with F being the discrete Fourier transform
matrix and U the eigenvector matrix of the covariance matrix
Σ. In this case, the precision matrix of y′ is given by

Ω′ = V†ΩV = F†U†ΩUF. (21)

This is a circulant matrix with equal diagonal entries given by
1
N tr(Ω), i.e.,

DΩ′ =
1

N
tr(Ω)I. (22)

Note also that for an arbitrary y

||Ω′y′||2F = ||F†U†ΩUFF†U†y||2F = ||Ωy||2F . (23)

By replacing the true precision matrix as its estimate, the CV
cost function of (19) applied to the transformed signal (20)
can then be written as

J2(K) = N2
I∑

i=1

∥∥∥Ω̂(i)
K Y(i)

∥∥∥2
F

(Tr(Ω̂
(i)
K ))2

. (24)

Note that the result in (24) does not explicitly require the cal-
culation of (20). In other words, (20) only serves as a proxy
for deriving the generalized CV expression. We observe that
(19) and (24) lead to similar performance of bandwidth selec-
tion.

3. NUMERICAL EXAMPLES

In order to better demonstrate the effectiveness of the pro-
posed bandwidth selection method, let us consider one more
precision matrix estimator which exploits the regression inter-
pretation in (9)-(12) for directly producing a banded precision
matrix estimate. With a bandwidth K, we can first generate
from the SCM Σ̂ a banded covariance matrix estimate R as
[7] R = Σ̂�BK , where BK is defined as

[BK ]i,j =

{
1, |i− j| ≤ K
0, |i− j| > K

. (25)

For each n, let imin = max(1, n −K), imax = min(N,n +
K), R∼n be a submatrix consisting of rows [imin, · · · , imax]
and columns [imin, · · · , imax] of R with the n-th row and n-
th column excluded; rn consisting of entries [imin, · · · , imax]
of the n-th column of R with its n-th entry excluded; rnn the
(n, n)-th entry of R. Let wn = R−1∼nrn. Then according to
(9)-(12), the n-th diagonal entry of the precision matrix Ω can
be estimated by ω̂nn = 1

rnn−w†
nrn

. The remaining nonzero
entries of the n-th column (excluding the diagonal entry) of
Ω is then set as the corresponding entries of −ω̂nnwn. Re-
peating this process for n ∈ {1, 2, · · · , N} will produce a
banded precision matrix estimate Ω̂, which is generally not
Hermitian. In order to produce a Hermitian precision matrix
estimate, we set

Ω̂
(2)
K =

1

2

(
Ω̂ + Ω̂†

)
. (26)

We now present numerical examples of applying the pro-
posed CV method to choose the bandwidth for the precision
matrix estimates. An autoregressive (AR) model [7] is first
assumed for the true covariance matrix Σ of y, with its (i, j)-
th entry given by

[Σ]i,j = ρ|i−j|,∀i, j, (27)

where ρ is a constant. We assume zero-mean, Gaussian data
but our methods do not rely on knowledge about the distribu-
tion. We use the normalized Frobenius norm of the estimation
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Fig. 1. NMSE of precision matrix estimates using the pro-
posed CV bandwidth selection for different training lengths.
The AR covariance matrix with N = 100 and ρ = 0.7 is as-
sumed. The maximum bandwidth considered is Kmax = 20.

error

L(Ω̂) =
||Ω̂−Ω||2F
‖Ω‖2F

(28)

to measure the accuracy of precision matrix estimation and
define its average as the normalized MSE (NMSE). Fig. 1
demonstrates the performance of proposed CV method when
applied to the precision matrix estimators Ω̂

(1)
K and Ω̂

(2)
K in (5)

and (26), respectively. The results marked by “oracle” apply
the bandwidths that minimize the Frobenius norm loss of (28),
which can be obtained only when the true precision matrix is
known. The “oracle” results are used to benchmark the per-
formance of our proposed CV method. It can be seen that both
the proposed precision matrix estimators significantly outper-
form the SPM, especially when the number of samples T is
smaller than the dimension N . The estimator based on co-
variance matrix tapering, i.e., Ω̂

(1)
K , is less effective than the

regression analysis-based estimator Ω̂
(2)
K . It can be seen that

the proposed CV method with different implementations all
achieve near-oracle choice of the bandwidth under the loss in
(28).

We also test on the Fractional Gaussian noise (FGN)
model considered in [7]:

[Σ]ij =

{
1, i = j

1
2

[
(|i−j|+1)2H−2|i−j|2H+(|i−j|−1)2H

]
, i 6= j

(29)
Fig. 2 shows the results of precision matrix estimation for
N = 100 and H = 0.9. Note that this is an ill-conditioned
case where the covariance matrix has a condition number of
222. The tapering-based design does not work well because
the entries of Σ decays very slowly off diagonals. However,
our proposed designs are still able to achieve near-optimal
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Fig. 2. NMSE of precision matrix estimates using the pro-
posed CV bandwidth selection for different training lengths
with I = 2 and the cost in (19). The FGN covariance ma-
trix with N = 100 and H = 0.9 is assumed. The maximum
bandwidth considered is Kmax = 20.

bandwidth tuning for the two precision matrix estimators con-
sidered.

4. CONCLUSIONS

This paper introduced a cross-validation method based on
regression-analysis of the precision matrix for determining
the bandwidth for regularized precision matrix estimation.
This method is distribution-free, easy to implement and can
approach the oracle bandwidth selection under a quadratic
loss. Its effectiveness is evaluated with different structures of
covariance matrix.
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