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ABSTRACT

This paper addresses structured covariance matrix estimation under

t-distribution. Covariance matrices frequently reveal a particular

structure due to the considered application and taking into account

this structure usually improves estimation accuracy. In the frame-

work of robust estimation, the t-distribution is particularly suited to

describe heavy-tailed observation. In this context, we propose an

efficient estimation procedure for covariance matrices with convex

structure under t-distribution. Numerical examples for Hermitian

Toeplitz structure corroborate the theoretical analysis.

Index Terms— Robust estimation, structured covariance ma-

trix, convex structure, t-distribution, M -estimators.

1. INTRODUCTION

In adaptive signal processing, the estimation of the Covariance

Matrix (CM) is a step at the center of most of the existing algo-

rithms [1]. In addition to the Hermitian and positive properties,

CM generally exhibits a specific structure due to the considered

application. For example, using uniform linear arrays, CM reveals

the Toeplitz structure [2]. For certain statistical models such as

MIMO communications, CM can be expressed as a Kronecker prod-

uct of two smaller dimension matrices, which could be themselves

structured [3] (e.g., the reader is referred to [4] for further exam-

ples of structured CM). Taking into account this structure, leads

to a better estimation accuracy, since the degree of freedom in the

estimation problem decreases. This problem has been widely ex-

plored in the Gaussian framework [5]. However, the Gaussian case

is not suited for heavy tailed observations. Conversely, the class

of Complex Elliptically Symmetric [6, 7] (CES) includes most of

usual non Gaussian distributions [8–11]. Notably, it includes the

t-distribution, which gives a convenient extension of the normal

distribution that can accurately model spiky radar clutter measure-

ments [8,10]. The extra-parameter of this distribution, called degree

of freedom, provides a more flexible modeling with moderate in-

crease in computational complexity [12]. In this context, the main

contribution of this paper is to propose a consistent and efficient

estimator for CM with convex structures under t-distributed data.

This paper is organized as follows. In section 2, we relate

our contribution to prior work. In section 3, a brief review on t-
distribution and the Fisher Information Matrix (FIM) is presented.
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cial participation to this work. This work is also partially funded by the ANR
ASTRID referenced ANR-17-ASTR-0015.

Section 4 focuses on the proposed estimator. The performance anal-

ysis is treated in Section 5. Section 6 gives a particular application

considering a Hermitian Toeplitz structure with simulation results.

In the following, the notation
d
= indicates “has the same distribu-

tion as”. Convergence in distribution and in probability are, respec-

tively, denoted by
d→ and

P→. For a matrix A, |A| and Tr (A) denote

the determinant and the trace of A. AT (respectively AH) stands for

the transpose (respectively conjugate transpose) matrix. The vec-

operator vec(A) stacks all columns of A into a vector. The operator

⊗ refers to Kronecker matrix product and finally, the subscript ”e”

refers to the true value.

2. RELATION TO PRIOR WORK

In recent works, unstructured CM estimator under t-distribution with

unknown degree of freedom has been studied in [13] by combining

Maximum Likelihood (ML) and Method of Moments (MoM) ap-

proaches. However, the convergence of this latter iterative proce-

dure is not guaranteed. Furthermore, robust estimation of CM with

convex structures from normalized observations has been inspired

by the unstructured distribution-free scatter matrix estimator pro-

posed by Tyler [14]. Specifically, in [15], a COnvexly ConstrAined

(COCA) CM estimator is proposed, leaning on the General MoM for

the Tyler’s estimator subject to convex constraints. This estimator is

consistent but suffers from heavy computational cost. In [16,17], es-

timators have been proposed minimizing Tyler’s cost function under

structure constraints with iterative Majorization-Minimization algo-

rithms. In [18], an efficient estimator for convex structured scat-

ter matrix and normalized data is derived based on the COvariance

Matching Estimation Technique (COMET) approach [5]. To the best

of our knowledge, no estimator has been carried out for convex struc-

tured CM in a t-distribution context. In this paper, we fill this lack.

3. BACKGROUND AND PROBLEM SETUP

3.1. Background on the complex t-distribution

A m-dimensional zero mean random vector (r.v.), yn ∈ C
m fol-

lows a complex t-distribution with d degrees of freedom, denoted

by yn ∼ Ctm,d (0,R), if it has the following probability density

function (pdf) [7]:

p(yn;R, d) =
Γ(d+m)

πmdmΓ(d)
|R|−1g

(
y
H
n R

−1
yn

)
(1)

where R is the scatter matrix, d is a positive real number and

the function g(·), called the density generator function, is given

4474978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



by g(s) = (1 + s/d)−(d+m)
. Furthermore, the covariance

matrix of the observations is related to the scatter matrix by

Cov(yn) = E
[
ynyH

n

]
=

d

d− 1
R, d 6= 1. This distribution

has heavier tail than the Gaussian distribution. For example, the

case d = 0.5 corresponds to the complex Cauchy distribution and

the limit case d → ∞ coincides with the Gaussian distribution. It

has finite 2nd-order moment for d > 1. The 2nd-order modular

variate, Qn defined as Qn
d
= yH

n R−1yn is a non-negative random

variable, whose pdf is expressed by

p(q;R, d) =
Γ(d+m)

dmΓ(d)Γ(m)
qm−1g(q) (2)

The t-distribution belongs to the subclass of Compound-Gaussian

distributions [7, 19]. Indeed, a t-distributed r.v. with d degrees of

freedom, y has the following stochastic representation

y
d
=

√
2d

x
n, withx ∼ χ2

2d and n ∼ CN (0,R) (3)

where χ2
ν denotes the central chi-squared distribution with ν degrees

of freedom.

3.2. Fisher Information Matrix

The Fisher Information Matrix (FIM) is a useful tool to study the ul-

timate performance of unbiased estimators. Specifically, the Cramér-

Rao bound (CRB), which is the inverse of the FIM, is a lower bound

on the mean squarre error. In the Gaussian framework, the FIM

can be easily derived using the so-called Slepian-Bang formula [20,

21]. In [22], an extension of this formula has been derived for the

CES distribution. Considering the particular case of the complex t-
distribution with zero mean and a scatter matrix R parameterized by

µ, the (k, ℓ) element of the FIM for a single vector of observation is

given by [22]:

[F](k,ℓ) =
(d +m)Tr

(
R−1R̃kR−1R̃ℓ

)
− Tr

(
R−1R̃k

)
Tr
(
R−1R̃ℓ

)

d+m+ 1
(4)

in which R̃k =
∂R

∂µk
. As noticed previously, for d → ∞, we re-

trieve the Slepian-Bang’s formula in the Gaussian case.

3.3. Problem setup

Let us consider N i.i.d. zero mean t-distributed observations,

yn ∼ Ctm,d (0,Re) , n = 1, . . . , N . We assume that the scatter

matrix belongs to a convex subset S of Hermitian positive-definite

matrices, and that there exists a one-to-one differentiable mapping

µ 7→ R(µ) from R
P to S . The vector µ is the unknown parameter

of interest with exact value µe, and Re = R(µe) corresponds to the

exact scatter matrix.

The negative log-likelihood function is given, up to an additive

constant, by

L(y
1
, ., y

N
;µ) =

(d + m)

N

N∑

n=1

log

(

1 +
yH
n

R(µ)−1y
n

d

)

+ log |R(µ)|

(5)

The above function is non-convex w.r.t R, its minimization w.r.t. µ is

therefore a difficult and time consuming problem. To overcome this

issue, we propose in the next section a new estimation method that

gives unique, consistent and asymptotically efficient estimates. Fur-

thermore, for linear structures, we obtain closed form expressions of

the estimates.

4. PROPOSED ALGORITHM

In this section, we propose a two step estimation procedure of µ.

The first step consists in computing the unstructured ML-estimator

of R. The estimation of µ is then obtained by solving a weighted

least squares problem, derived from the so-called EXIP (EXtended

Invariance Principle) approach [23]. For notational convenience, we

omit the dependence on N for the estimators based on N observa-

tions when there is no ambiguity.

4.1. Step 1: unstructured ML-estimation of R

Let N i.i.d. observations, yn ∼ Ctm,d (0,R) with N > m.

The unstructured ML-estimator for the scatter matrix, denoted by

R̂, minimizing the negative log-likelihood (5) is the solution of the

following fixed point equation:

R̂ =
d+m

N

N∑

n=1

ynyH
n

d+ yH
n R̂

−1
yn

, HN (R̂) (6)

The reader can refer to [6,24] for the study of existence and unique-

ness related to (6), for which the iterative algorithm Rk+1 = HN(Rk)

converges to R̂ for any initialization point [7]. Moreover, the con-

sistency and the asymptotic Gaussianity of this estimator have been

proved in [7, Section VI]. Specifically, one has the following prop-

erties by [25]

√
Nvec

(
R̂ − R

)
d−→ CN (0,Σ,Ω) (7)

with






Σ = σ1

(
RT ⊗ R

)
+ σ2vec (R) vec (R)H

Ω = σ1

(
RT ⊗ R

)
K + σ2vec (R) vec (R)T

where σ1 =
d+m+ 1

d+m
and σ2 =

d+m+ 1

d(d+m)
[13].

4.2. Step 2: Estimation of µ

For the second step, the estimator on µ is obtained from the FIM and

the unstructured ML-estimator for R. It is determined by minimizing

the following function, designed from the EXIP method [23]:

µ̂ =arg min
µ

(γ̂ − γ(µ))T F (γ̂ − γ(µ))

=arg min
µ

∑

k,ℓ

(γ̂k − γk(µ)) [F](k,ℓ) (γ̂ℓ − γℓ(µ))

where γ̂k denotes the k-th component of γ̂ = J vec
(

R̂
)

= J r̂,

γ(µ) = J vec (R(µ)) = J r (µ) with J the matrix transforming the

complex-valued vector r into a real-valued vector γ by the Hermitian

property. The matrix J is invertible since the mapping between r

and γ is one-to-one. In practice, the FIM is unknown, then we use

its estimate, denoted by F̂ and obtained from (4) by plugging an

estimate of R. Therefore, we obtain, by noting Rk =
∂R

∂γk
,

µ̂ = arg min
µ

(d+m)Tr

(
R̂
−1

QR̂
−1

Q

)
− Tr

(
R̂
−1

Q

)
Tr

(
R̂
−1

Q

)
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with Q =
∑
k

(γ̂k − γk(µ))Rk . Furthermore, we remark that

Q = Re +
∑

k

(γ̂k − γek)Rk −
(

Re +
∑

k

(γk(µ)− γek)Rk

)

In the above expression, we notice two first order Taylor expansions

of R̂, respectively R(µ), around Re justified by the consistency of γ̂

and µ̂, whose the latter is provided by the EXIP method [23]. We

finally achieve the following criterion

µ̂ = arg min
µ

J (µ) with

J (µ) =(d +m)Tr
(

R̂
−1
(

R̂ − R(µ)
)

R̂
−1
(

R̂ − R(µ)
))

−
[
Tr
(

R̂
−1
(

R̂ − R(µ)
))]2

(8)

Using the following relations Tr
(
AHB

)
= vec (A)H vec (B) and

vec (AXB) =
(
BT ⊗ A

)
vec (X), we rewrite (8) as

µ̂ =arg min
µ

(̂r − r(µ))H Ŷ (̂r − r(µ)) =
∥∥∥Ŷ

1/2
(̂r − r(µ))

∥∥∥
2

(9)

with Ŷ = (d+m)Ŵ
−1−vec

(
R̂
−1
)

vec

(
R̂
−1
)H

and Ŵ = R̂
T ⊗ R̂.

Given R̂, the function J (µ) is convex w.r.t R(µ). Therefore, for

R ∈ S convex set, the minimization of (9) w.r.t. R(µ) is a convex

problem that admits a unique solution. In the following, we address

the study of consistency and efficiency of µ̂ given as minimizer of

(9).

5. ASYMPTOTIC PERFORMANCES

This section provides a statistical analysis of the proposed estimator

µ̂, which is the unique solution minimizing the criterion (8) w.r.t

µ = (µ1, . . . , µP )
T ∈ R

P as already mentioned.

Theorem 1. The estimator µ̂, given by (8), is a consistent estimator

of µe. Likewise, R (µ̂) is a consistent estimator of R(µe).

Proof. Using the consistency of R̂ [7] and for large N, we obtain

Ŷ
P→ Ye, r̂

P→ re. Consequently, (9) becomes

µ̂ = arg min
µ

∥∥∥Y
1/2
e (re − r(µ))

∥∥∥
2

. (10)

Since Y
1/2
e is a full-rank matrix, the unique solution of the above

problem satisfies re = r(µ̂). Hence, under the assumption of a

one-to-one mapping, the only solution is µe, which establishes

the consistency of µ̂. Finally, the continuous mapping implies

R(µ̂)
P→ R(µe) �

Theorem 2. Let µ̂N be the estimator of µe defined by (8) and based

on N i.i.d. observations, yn ∼ Ctm,d (0,R(µe)). µ̂N is asymptoti-

cally unbiased, efficient and Gaussian distributed. Specifically,

√
N (µ̂N − µe)

d→ N (0,CRB) (11)

with CRB =
d+m+ 1

N

(
∂r

∂µ

H

Ye
∂r

∂µ

)−1

, in which we note

Ye = (d + m)W−1
e − vec

(
R−1

e

)
vec
(
R−1

e

)H
and

∂r(µ)

∂µ
refers

to the Jacobian matrix of r(µ).

Proof. The estimate µ̂N is given by minimizing the function J (µ).
The consistency of µ̂N allows us to write the following Taylor ex-

pansion around µe :

0 =
∂J (µ)

∂µ

∣∣∣∣
µ=µ̂N

=
∂J (µ)

∂µ

∣∣∣∣
µ=µe

+

(
∂2J (µ)

∂µ∂µT

∣∣∣∣
µ=ξN

)

(µ̂N − µe)

with ξN such as |ξN − µe| ≤ |µ̂N − µe|, leading to

µ̂N − µe = −

(
∂2J (µ)

∂µ∂µT

∣∣∣∣
µ=ξN

)−1
∂J (µ)

∂µ

∣∣∣∣
µ=µe

s.t. invertibility

Therefore lim
N→∞

ξN = µe by consistency of µ̂N . According to [5,

26], we obtain for large N

µ̂N − µe
d
= −H(µe)

−1
gN (µe)

with gN (µ) =
∂J (µ)

∂µ
and H(µ) = lim

N→∞

(
∂2J (µ)

∂µ∂µT

)
invertible

in the neighborhood of µe. After some calculus, we obtain from (9)

gN(µ) = −2
∂r(µ)

∂µ

H

Ŷ (̂r − r(µ))

H(µe) = 2
∂r(µ)

∂µ

∣∣∣∣
H

µ=µe

Ye

∂r(µ)

∂µ

∣∣∣∣
µ=µe

By consistency of Ŷ, we obtain for large N

gN (µe) ≃ −2
∂r(µ)

∂µ

∣∣∣∣
H

µ=µe

Ye (̂r − r(µe))

Then,

Cov (µ̂N) ≃ H(µe)
−1

E

[
gN(µe)gN (µe)

H
]

H(µe)
−1

Using the asymptotic distribution of r̂ given by (7), we finally obtain,

in asymptotic regime,

E [µ̂N − µe] ≃ −E
[
H(µe)

−1
gN(µe)

]

≃ 2H(µe)
−1 ∂r(µ)

∂µ

∣∣∣∣
H

µ=µe

YeE [̂r − r(µe)]

E

[
gN (µe)gN (µe)

H
]
≃

4(d +m+ 1)

N

∂r(µ)

∂µ

∣∣∣∣
H

µ=µe

Ye
∂r(µ)

∂µ

∣∣∣∣
µ=µe

Hence, concerning the bias and the covariance on µ̂N , we obtain

asymptotically E [µ̂N − µe] −→
N→+∞

0 and

Cov (µ̂N )−1 =
N

d+m+ 1

∂r

∂µ

H

Ye

∂r

∂µ
= CRB(µ)−1

where the CRB was obtained from the equation (4). It follows from

the Delta method [27, Chapter 3] generalized for complex-valued

estimators connected by a C-differentiable function [28, 29] that√
Nvec (µ̂− µe)

d−→ N (0,CRB) �
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6. NUMERICAL RESULTS

In this section, we illustrate the results of the previous statisti-

cal analysis for an Hermitian Toeplitz scatter matrix, which has

indeed a convex structure. A natural parameterization for the

Toeplitz structure is to take the real and imaginary parts of the

first row in the matrix as interest parameter. For m = 4, the

Toeplitz scatter matrix is generated from the Vandermonde matrix,

A with [A]k,ℓ = ej2π(k−1)fℓ , fℓ > 0 and the positive diagonal

matrix, D, by R = ADAH and a trace equal to m. We generate

5000 sets of N independent m-dimensional t-distributed samples,

yn ∼ Ctm,d (0,Re) , n = 1, . . . , N with d = 5 degrees of free-

dom, using the stochastic representation (3).

We compare the performance of the proposed algorithm to the

state-of-the-art and the CRB. Furthermore, we display the perfor-

mance of the proposed estimation scheme by replacing the first

step by the joint-algorithm proposed in [13] (to deal with the pos-

sibility of unknown parameter d). Our algorithm is compared to

RCOMET from [18] and COCA from [15]. Both methods are based

on the Tyler’s scatter estimator [14] using normalized observations

zn = yn/‖yn‖. To the best of our knowledge, there is no other

algorithm specifically derived for t-distributed observations dealing

with structured scatter matrix. Finally, we compare to the intuitive

estimate µ obtained by averaging the real and imaginary parts of

diagonals of the unstructured ML estimator (projection onto the

Toeplitz set). The algorithms proposed in [16, 17] are not adapted

for the considered case.

101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

Number of samples N

‖
E
[µ̂

−
µ

e
]‖

2

Proposed algo. (step 1: [13])

Proposed algo. (step 1: ML)

COCA [15]

RCOMET [18]

Projection (step 1: ML)

Fig. 1. Bias simulation

Fig. 1 presents the Euclidean norm of the estimated bias for µ̂

based on 5000 runs for each N . As shown previously, our algorithm

with the unstructured ML estimator is asymptotically unbiased as

well as the other algorithms. Performance of the proposed estimation

scheme with the joint-algorithm as first step are not displayed for

small N , since the joint-algorithm does not converge for part of the

5000 runs.

The asymptotic efficiency of our estimator is checked on Fig. 2:

it reaches the CRB as N increases. RCOMET, and COCA do not

reach this bound since they do not take into account the underlying

distribution of the data. Despite the absence of convergence proof

for the joint-algorithm, we remark that optimal asymptotic perfor-

mances for µ may be approached with unknown d.

101 102 103

−40

−30

−20

−10

0

Number of samples N

T
r
{

M
S

E
(µ̂

)}
(d

B
)

Proposed algo. (step 1: [13])

Proposed algo. (step 1: ML)

Tr (CRBCt)

COCA [15]

RCOMET [18]

Projection (step 1: ML)

Fig. 2. Efficiency simulation

N
RCOMET
[18]

Projection
(step1: ML)

Proposed
algo.(step1:
ML)

Proposed
algo.(step1:
[13])

COCA
[15]

100 0.012 s 0.017 s 0.018 s 0.46 s 2.18 s

500 0.048 s 0.086 s 0.086 s 1.94 s 15.1 s

1000 0.090 s 0.17 s 0.17 s 3.63 s 50.4 s

Table 1. Average calculation time

The Table 1 recaps the averaging calculation time of the different

algorithms. As already mentioned, the COCA estimator suffers from

heavy computational cost, since the number of constraints grows lin-

early in N . The estimation scheme with the joint-algorithm is slower

than the one using the exact ML-estimator, which makes sense since

the degree of freedom of the t-distribution is also estimated.

7. CONCLUSION

In this paper, we addressed structure covariance estimation for con-

vex structures. We proposed a consistent, asymptotically unbiased

and efficient estimator for t-distribution. Numerical simulations val-

idate the theoretical analysis and show a performance gain compared

to other algorithms, which normalize first the observations.
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