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ABSTRACT

In this work, we propose a novel method for interpolation and
extrapolation of Toeplitz structured covariance matrices. By
considering a spectral representation of Toeplitz matrices, we
use an optimal mass transport problem in the spectral domain
in order to define a notion of distance between such matri-
ces. The obtained optimal transport plan naturally induces a
way of interpolating, as well as extrapolating, Toeplitz matri-
ces. The constructed covariance matrix interpolants and ex-
trapolants preserve the Toeplitz structure, as well as the pos-
itive semi-definiteness and the zeroth covariance of the orig-
inal matrices. We demonstrate the proposed method’s abil-
ity to model locally linear shifts of spectral power for slowly
varying stochastic processes, illustrating the achievable per-
formance using a simple tracking problem.

Index Terms— Covariance interpolation, Optimal mass
transport, Toeplitz matrices, Spectral estimation

1. INTRODUCTION

Statistical modeling is a key tool for estimation and identi-
fication and is used in most areas of signal processing. An
intrinsic component of such models are covariance estimates,
which is extensively used in application areas such as spec-
tral estimation, radar, and sonar [1, 2], wireless channel esti-
mation, medical imaging, and identification of systems and
network structures [3, 4]. Although being a classical sub-
ject (see, e.g., [5]) covariance estimation has recently received
considerable attention. Such contributions include works on
finding robust covariance estimates with respect to outliers,
as well as methods suitable for handling different distribu-
tion assumptions, including families of non-Gaussian distri-
butions [6–10]. Another active area is covariance estimation
with an inherent geometry that gives rise to a structured co-
variance matrix. Such structures could arise from stationar-
ity assumptions of the underlying object [11–15] or be due
to assumptions in, e.g., the underlying network structures in
graphical models [16, 17]. In this work, we will focus on

This work was supported in part by the Swedish Research Council.

Toeplitz structures, which naturally arise when modelling sta-
tionary signals and processes.

Although many methods rely on stationarity for modeling
signals, such assumptions are typically not valid over longer
time horizons. Therefore, tools for interpolation and morph-
ing of covariance matrices are important for modeling and
fusing of information. Several such tools for interpolating co-
variances have recently been proposed in the literature, for ex-
ample methods based on g-convexity [9], optimal mass trans-
port [18], and information geometry [19]. An alternative ap-
proach for such interpolation is to relax, or ”lift”, the covari-
ances and instead consider interpolation between the lifted
objects. For example, in [20] (see also [21]), interpolation
between covariance matrices is induced by the optimal mass
transport geodesics between the Gaussian density functions
with the corresponding covariances.

In this work, we propose a new lifting approach, where
the lifting is made from the covariance domain to the fre-
quency domain, motivated by the spectral representation of
positive semi-definite Toeplitz matrices. We combine this
approach with the frequency domain metric based on opti-
mal mass transport, proposed in [22], in order to define pair-
wise distances between Toeplitz matrices. This is done by
considering the minimum distance in the optimal mass trans-
port sense between the sets of power spectra consistent with
each of the Toeplitz matrices. We show that the proposed
distance measure gives rise to a natural way of interpolating
and extrapolating Toeplitz matrices. The method preserves
the Toeplitz structure, the positive semi-definiteness, as well
as the zeroth moment of the interpolating/extrapolating ma-
trices.

Notation
Let Mn

+ denote the set of positive semi-definite n×n Hermi-
tian matrices, and let (·)T and (·)H denote the transpose and
the Hermitian transpose, respectively. Also, let (·) denote the
complex conjugate, and let E(·) denote the expectation opera-
tor. Furthermore, let T = (−π, π] and letM+(T) denote the
set of generalized integrable non-negative functions on the set
T, e.g., such functions that may contain singular parts, such
as Dirac delta functions.
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2. BACKGROUND

2.1. Stochastic processes and spectral representations

Consider a complex-valued discrete-time stochastic process
(signal) y(t), t ∈ Z, that is zero mean and wide sense sta-
tionary (WSS), i.e., E(y(t)) = 0 and the covariance rk =
E(y(t)y(t− k)) is independent of t. The power spectrum,
denoted by Φ, represents the frequency content of the process
y(t), and is the non-negative function1 on T whose Fourier
coefficients coincide with the covariances, i.e.,

rk =
1

2π

∫
T

Φ(θ)e−ikθdθ (1)

for k ∈ Z (see, e.g., [23, Chapter 2]). Since the process y(t)
is WSS, the n× n covariance matrix of the signal

R =


r0 r−1 r−2 · · · r−n+1

r1 r0 r−1 · · · r−n+2

r2 r1 r0 · · · r−n+3

...
...

...
. . .

...
rn−1 rn−2 rn−3 · · · r0

 (2)

is a Toeplitz matrix. Typically in spectral estimation, one
considers the inverse problem of recovering the power spec-
trum Φ from a given set of covariances rk for k ∈ Z, with
|k| ≤ n − 1. A power spectrum is consistent with such a se-
quence if (1) holds for |k| ≤ n− 1. Expressed in matrices, a
spectrum is consistent with such a partial covariance sequence
if Γ(Φ) = R, where Γ :M+(T)→Mn

+ is the linear operator

Γ(Φ) ,
1

2π

∫
T
a(θ)Φ(θ)a(θ)Hdθ (3)

and

a(θ) =
[

1 eiθ . . . ei(n−1)θ
]T
/
√
n (4)

is the Fourier vector. Note that Γ(Φ) is a Toeplitz matrix
since a(θ)a(θ)H is Toeplitz for any θ. For any positive semi-
definite Toeplitz matrix R, there always exists a consistent
power spectrum; in fact, if R is positive definite, there is an
infinite family of consistent power spectra [24]. We will in the
main section utilize such spectral representations in order to
define distances between Toeplitz matrices, with the distance
being defined in terms of the optimal mass transport cost be-
tween consistent power spectra.

2.2. Optimal mass transport

The Monge-Kantorovich transportation problem is the prob-
lem of finding an optimal transport plan between two given
mass distributions [25, 26]. Here, the cost of moving a unit
mass is defined on the underlying space, and the optimal

1A power spectrum is in general a non-negative bounded measure and
may contain, e.g., spectral lines.

transport plan is the one with minimal total cost. The result-
ing total cost associated with the transport plan is then used
as a measure of similarity, or distance, between the two mass
distributions. These ideas have been used for defining metrics
between power spectra [22], as well as for tracking stochastic
processes with smoothly varying spectral content and spectral
morphing for speech signals [27]. Recently, the notion has
also been utilized in fundamental frequency estimation algo-
rithms as a means of clustering [28]. As in [22], we define
the distance between two spectra Φ0 and Φ1 as

T (Φ0,Φ1) , min
M∈M+(T2)

∫
T2

c(θ, ϕ)M(θ, ϕ)dθdϕ (5a)

subject to Φ0(θ) =

∫
T
M(θ, ϕ)dϕ (5b)

Φ1(ϕ) =

∫
T
M(θ, ϕ)dθ (5c)

where T2 = T×T denotes the 2-D frequency space. Here, the
cost function, c(θ, ϕ), denotes the transportation cost of mov-
ing one unit of mass between the frequencies θ and ϕ. The
transport plan, M(θ, ϕ), specifies the amount of mass moved
from frequency θ to frequency ϕ. The objective in (5a) is the
total cost incurred by the transport planM and the constraints
(5b) and (5c) ensure that M is a valid transport plan from Φ0

to Φ1. It may be noted that the distance measure T (Φ0,Φ1)
is only defined for spectra of the same mass. However, this
may be generalized in order to handle mass distributions with
different total mass by including a cost for adding and sub-
tracting mass (see [22] for details).

3. A NOTION OF DISTANCE FOR
TOEPLITZ MATRICES

Given a pair of positive semi-definite Toeplitz matrices R0

and R1, there is, as noted above, a family of power spectra
consistent with each of them. Accordingly, we define the dis-
tance between R0 and R1 as the minimum transportation cost
between the corresponding spectral families, i.e.,

d(R0,R1) , min
Φj∈M+(T)

T (Φ0,Φ1)

subject to Γ(Φj) = Rj for j = 0, 1
(6)

using the cost function c(θ, ϕ) = |eiθ − eiϕ|2. Using (5), the
expression (6) may be formulated as the convex optimization
problem

min
M∈M+(T2)

∫
T2

c(θ, ϕ)M(θ, ϕ)dθdϕ

subject to Γ

(∫
T
M(θ, ϕ)dϕ

)
= R0

Γ

(∫
T
M(θ, ϕ)dθ

)
= R1.

(7)

As we will see next, this construction also implies a natural
way of interpolating and extrapolating Toeplitz matrices.
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Fig. 1. Interpolated spatial spectrum estimated as
a(θ)HRτa(θ), where Rτ is obtained by solving (6).

3.1. Interpolation, extrapolation, and tracking

Based on a transport plan, M , one may define intermedi-
ate spectra by linearly shifting the frequency locations of the
mass as dictated by M . That is, any mass transfered from
φ to φ + ϕ is at τ ∈ [0, 1] located at φ + τϕ, and thus the
intermediate spectrum is given by

ΦMτ (θ) =

∫
T2

δθ({φ+ τϕ}modT)M(φ, φ+ ϕ)dφdϕ

=

∫
T
M(θ − τϕ, θ + (1− τ)ϕ)dϕ. (8)

Here, δθ is the Dirac delta function localized at θ and the in-
tegrands are extended periodically with period 2π outside the
domain of integration. Also, we denote by {x}modT the value
in T that is congruent with x modulo 2π. This construction
allows one to define a corresponding interpolating covariance
matrix Rτ according to

Rτ = Γ(ΦMτ ) (9)

=

∫
T
a(θ)

(∫
T
M(θ − τϕ, θ + (1− τ)ϕ)dϕ

)
a(θ)Hdθ

=

∫
T2

a({φ+ τϕ}mod T)M(φ, φ+ϕ)a({φ+ τϕ}mod T)Hdφdϕ

for τ ∈ [0, 1]. From this, it may be noted that (9) naturally
lends itself to extrapolation, i.e., directly allows for choosing
τ outside the interval [0, 1]. The following proposition fol-
lows directly from the definition of Rτ .

Proposition 1. Let R0,R1 ∈ Mn
+ be Toeplitz matrices with

same zeroth covariance. For any τ ∈ R, let Rτ be given by
(9) where M is the minimizing transport plan in (7). Then the
following properties hold:

a) Rτ is a Toeplitz matrix
b) Rτ is positive semi-definite
c) Rτ has same zeroth covariance as R0 and R1.
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Fig. 2. Interpolated spatial spectrum estimated as
a(θ)HRconv

τ a(θ), where Rconv
τ is the linear combination of

R0 and R1.

Due to these properties, the proposed method offers a
way of interpolating the covariances of, e.g., slowly varying
time series as the interpolant Rτ allows for modeling lin-
ear changes in the spectrum of the process. The proposed
method can also be readily used for spectral tracking by fit-
ting a covariance path Rτ to a sequence of covariance matrix
estimates, R̂τj , for j = 1, . . . , J . In order to formulate this,
we let Iτ (M) , Γ(ΦMτ ) denote the linear operator in (9) that
maps the transport plan to a covariance matrix on the path.
Thus, the tracking problem can be expressed as the convex
optimization problem

minimize
M∈M+(T2)

∫
T2

c(θ, ϕ)M(θ, ϕ)dθdϕ+λ

J∑
j=1

∥∥∥Iτj (M)−R̂τj

∥∥∥2

F

(10)

where λ > 0 is a user-specified regularization parameter.
Thus, the added regularization term will penalize deviations
of the induced interpolant Rτ = Iτ (M) from the estimated
covariances, as measured by the squared Frobenius norm.

3.2. Comparison with other methods

The properties in Proposition 1 distinguish the proposed in-
terpolant Rτ from other proposed matrix geodesics. As an
example, consider the basic method of forming interpolants
using convex combinations of R0 and R1, i.e., Rconv

τ =
τR0 + (1− τ)R1, for τ ∈ [0, 1]. This preserves the Toeplitz
structure, as well as the zeroth covariance and the positive
semi-definiteness. However, from a spectral representation
point of view, the convex combination gives rise to fade-in
fade-out effects, i.e., only spectral modes directly related to
R0 and R1 can be represented, and there can be no shift in
the location of these modes (see the example in Section 4.1
and Figure 2). Other more sophisticated options include, e.g.,
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Fig. 3. Spectrum estimated as a(θ)HR̂a(θ), where R̂ is esti-
mated as the sample covariance matrix based on 100 samples
in each window.

the geodesic with respect to g-convexity [9]

R̃τ = R
1/2
0

(
R

−1/2
0 R1R

−1/2
0

)τ
R

1/2
0 ,

and the geodesic in [20, 21], which builds on optimal mass
transport of Gaussian distributions

R̆τ =
(

(1− τ)R
1/2
0 +τR

1/2
1 U

)(
(1− τ)R

1/2
0 +τR

1/2
1 U

)H
where U = R

−1/2
1 R

−1/2
0 (R

1/2
0 R1R

1/2
0 )1/2. Although both

of these geodesics preserve positive semi-definiteness, they
neither preserve the Toeplitz structure nor the zeroth covari-
ance. As noted above, the three properties in Proposition 1
hold for all τ ∈ R for the proposed approach, and thus di-
rectly allows for extrapolation using (9). In contrast, it may be
noted that for the linear combination Rconv

τ there are no guar-
antees that the resulting matrix is positive semi-definite for
τ /∈ [0, 1]. Also, note that neither of the alternative geodesics,
R̃τ and R̆τ , naturally generalize to extrapolation.

4. NUMERICAL EXAMPLES

4.1. Interpolation and extrapolation for DOA

We begin by illustrating the performance of the proposed
method on an interpolation example for direction-of-arrival
(DOA) estimation. Consider a uniform linear array (ULA)
with 15 sensors with half-wavelength sensor spacing and a
scenario where two covariance matrices

R0 =
1

2

2∑
`=1

a(θ
(0)
` )a(θ

(0)
` )H + σ2I

R1 =
1

2
a(θ

(1)
1 )a(θ

(1)
1 )H +

1

4

3∑
`=2

a(θ
(1)
` )a(θ

(1)
` )H + σ2I

are available2. Here θ(0)1 = θ
(1)
1 = −50◦, θ(0)2 = 30◦,

θ
(1)
2 = 20◦, and θ(1)3 = 40◦, and σ2 = 0.05. Such a sce-

2Note that θ in this example denotes spatial frequency. For simplicity, we
retain the notation a(θ) also for this case.
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Fig. 4. Spectrum estimated as a(θ)HRτa(θ), where Rτ is
obtained by solving (10), fitted to a sequence of five covari-
ance estimates.

nario may be interpreted as a target at θ(0)2 splitting up into
two targets at θ(1)2 and θ(1)3 as time progresses, whereas the
target at θ(0)1 stays put. We use the proposed method to find
covariances Rτ , for τ ∈ [0, 2], and compare these to the basic
interpolant Rconv

τ based on convex and linear combinations.
Let the spectral estimates obtained using these interpolants be
Ψτ (θ) and Ψconv

τ (θ), respectively, defined as

Ψτ (θ) = a(θ)HRτa(θ) (11)

Ψconv
τ (θ) = a(θ)HRconv

τ a(θ).

The spectral estimates are shown in Figures 1 and 2. As can
be seen, the obtained covariance interpolant Rτ results in
spectra Ψτ that model linear displacement of the targets. Note
also that the extrapolated covariances Rτ for τ ∈ (1, 2] imply
that the targets continue linearly with respect to the look-angle
θ, as may be expected. For the basic interpolant, Rconv

τ , the
spectral estimates Ψconv

τ display undesirable behavior; clear
fade-in fade-out effects are visible, and non-negativity is vio-
lated for some of the extrapolated spectra.

4.2. Tracking of an AR-process
Next, we illustrate the approach in (10) for the tracking of
signals with slowly varying spectral content. To this end, con-
sider a complex autoregressive (AR) process with one com-
plex, time-varying pole. The pole is placed at a constant ra-
dius of 0.9, and moves from the frequency 0.4π to 0.6π. Spec-
tral estimates based directly on covariance matrix estimates R̂
are shown in Figure 3. These covariance matrix estimates are
obtained as the outer product estimate, based on 100 samples
each, where the overlap between each estimate is 80 samples.
As can be seen, the spectral estimates are very noisy and vary
greatly in power. Using five of these covariance matrix esti-
mates R̂, evenly spaced throughout the signal, we solve (10)
in order to obtain an estimated covariance path, Rτ . The re-
sulting spectra, estimated using (11), are shown in Figure 4.
As can be seen, the path resulting from the proposed method
allows for a smooth tracking of the shift in spectral content.
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