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ABSTRACT

Independent Component Analysis (ICA) is a technique
for unsupervised exploration of multi-channel data widely
used in observational sciences. In its classical form, ICA re-
lies on modeling the data as a linear mixture of non-Gaussian
independent sources. The problem can be seen as a likelihood
maximization problem. We introduce Picard-O, a precondi-
tioned L-BFGS strategy over the set of orthogonal matrices,
which can quickly separate both super- and sub-Gaussian
signals. It returns the same set of sources as the widely used
FastICA algorithm. Through numerical experiments, we
show that our method is faster and more robust than FastICA
on real data.

Index Terms— Independent component analysis, blind
source separation, quasi-Newton methods, maximum likeli-
hood estimation, preconditioning.

1. INTRODUCTION

Independent component analysis (ICA) [1] is a popular tech-
nique for multi-sensor signal processing. Given an N × T
data matrix X made of N signals of length T , an ICA algo-
rithm finds anN×N ‘unmixing matrix’W such that the rows
of Y = WX are ‘as independent as possible’. An important
class of ICA methods further constrains the rows of Y to be
uncorrelated. Assuming zero-mean and unit variance signals,
that is:

1
T Y Y

> = IN . (1)

The ‘whiteness constraint’ (1) is satisfied if, for instance,

W = OW0 W0 = ( 1
TXX

>)−1/2 (2)

and the matrix O is constrained to be orthogonal: OO> =
IN . For this reason, ICA algorithms which enforce signal
decorrelation by proceeding as suggested by (2) —whitening
followed by rotation— can be called ‘orthogonal methods’.

The orthogonal approach is followed by many ICA al-
gorithms. Among them, FastICA [2] stands out by its sim-
plicity, good scaling and a built-in ability to deal with both
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sub-Gaussian and super-Gaussian components. It also enjoys
an impressive convergence speed when applied to data which
are actual mixture of independent components [3, 4]. How-
ever, real data can rarely be accurately modeled as mixtures
of independent components. In that case, the convergence of
FastICA may be impaired or even not happen at all.

In [5], we introduced the Picard algorithm for fast non-
orthogonal ICA on real data. In this paper, we extend it to an
orthogonal version, dubbed Picard-O, which solves the same
problem as FastICA, but faster on real data.

In section 2, the non-Gaussian likelihood for ICA is stud-
ied in the orthogonal case yielding the Picard Orthogonal
(Picard-O) algorithm in section 3. Section 4 connects our
approach to FastICA: Picard-O converges toward the fixed
points of FastICA, yet faster thanks to a better approximation
of the Hessian matrix. This is illustrated through extensive
experiments on four types of data in section 5.

2. LIKELIHOOD UNDER WHITENESS
CONSTRAINT

Our approach is based on the classical non-Gaussian ICA
likelihood [6]. The N × T data matrix X is modeled as
X = AS where the N × N mixing matrix A is invertible
and where S has statistically independent rows: the ‘source
signals’. Further, each row i is modeled as an i.i.d. signal
with pi(·) the probability density function (pdf) common to
all samples. In the following, this assumption is denoted as
the mixture model. It never perfectly holds for real problems.
Under this assumption, the likelihood of A reads:

p(X|A) =
∏T
t=1

1
|det(A)|

∏N
i=1 pi([A

−1x]i(t)) . (3)

It is convenient to work with the negative averaged log-
likelihood parametrized by the unmixing matrix W = A−1,
that is, L(W ) = − 1

T log p(X|W−1). Then, (3) becomes:

L(W ) = − log|det(W )| − Ê
[∑N

i=1 log(pi(yi(t))
]
, (4)

where Ê denotes the empirical mean (sample average) and
where, implicitly, [y1, · · · , yN ]> = Y = WX .

We consider maximum likelihood estimation under the
whiteness constraint (1). By (2) and (4), this is equivalent
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to minimizing L(OW0) with respect to the orthogonal ma-
trix O. To do so, we propose an iterative algorithm. A given
iterate Wk = OkW0 is updated by replacing Ok by a more
likely orthonormal matrix Ok+1 in its neighborhood. Follow-
ing classical results of differential geometry over the orthogo-
nal group [7], we parameterize that neighborhood by express-
ing Ok+1 as Ok+1 = eEOk where E is a (small) N × N
skew-symmetric matrix: E> = −E .

The second-order Taylor expansion of L(eEW ) reads:

L(eEW ) = L(W ) + 〈G|E〉+
1

2
〈E|H|E〉+O(||E||3). (5)

The first order term is controlled by the N × N matrix G =
G(Y ), called relative gradient and the second-order term de-
pends on the N × N × N × N tensor H(Y ), the relative
Hessian. Both quantities only depend on Y = WX and have
simple expressions in the case of a small relative perturbation
of the form W ← (I + E)W (see [5] for instance). Those
expressions are readily adapted to the case of interest, using
the second order expansion exp(E) ≈ I+E+ 1

2E
2. One gets:

Gij = Ê[ψi(yi)yj ]− δij , (6)

Hijkl = δilδjkÊ[ψi(yi)yi] + δik Ê[ψ′i(yi)yjyl] . (7)

where ψi = −p
′
i

pi
is called the score function.

This Hessian (7) is quite costly to compute, but a simple
approximation is obtained using the form that it would take
for large T and independent signals. In that limit, one has:

Ê[ψ′i(yi)yjyl] ≈ δjl Ê[ψ′i(yi)]Ê[y2j ] for i 6= j, (8)

hence the approximate Hessian (recall Ê[y2j ] = 1):

H̃ijkl = δilδjkÊ[ψi(yi)yi] + δikδjl Ê[ψ′i(yi)] if i 6= j. (9)

Plugging this expression in the 2nd-order expansion (5) and
expressing the result as a function of the N(N − 1)/2 free
parameters {Eij , 1 ≤ i < j ≤ N} of a skew-symmetric
matrix E yields after simple calculations:

〈G|E〉+1

2
〈E|H̃|E〉 =

∑
i<j

(Gij−Gji) Eij+
κ̂i + κ̂j

2
E2ij (10)

where we have defined the non-linear moments:

κ̂i = Ê[ψi(yi)yi]− Ê[ψ′i(yi)] . (11)

If κ̂i + κ̂j > 0 (this assumption will be enforced in the next
section), the form (10) is minimized for Eij = −(Gij −
Gji)/(κ̂i + κ̂j): the resulting quasi-Newton step would be

Wk+1 = eDWk for Dij = − 2

κ̂i + κ̂j

Gij −Gji
2

. (12)

That observation forms the keystone of the new orthogonal
algorithm described in the next section.

3. THE PICARD-O ALGORITHM

As we shall see in Sec. 4, update (12) is essentially the behav-
ior of FastICA near convergence. Hence, one can improve
on FastICA by using a more accurate Hessian approximation.
Using the exact form (7) would be quite costly for large data
sets. Instead, following the same strategy as [5], we base our
algorithm on the L-BFGS method (which learns the actual
curvature of the problem from the data themselves) using ap-
proximation (10) only as a pre-conditioner.

L-BFGS and its pre-conditioning: The L-BFGS method
keeps track of them previous values of the (skew-symmetric)
relative moves Ek and gradient differences ∆k = (Gk −
G>k )/2− (Gk−1−G>k−1)/2 and of auxiliary quantities ρk =
〈Ek|∆k〉. It returns a descent direction by running through
one backward loop and one forward loop. It can be pre-
conditioned by inserting a Hessian approximation in between
the two loops as summarized in algorithm 1.

Stability: If the ICA mixture model holds, the sources
should constitute a local minimum of L. According to (10),
that happens if κ̂i + κ̂j > 0 for all i < j (see also [8]). We
enforce that property by taking, at each iteration:

ψi(·) = sign(ki)ψ(·) (13)

where ki = Ê[ψ(yi)yi] − Ê[ψ′(yi)] and ψ is a fixed non-
linearity (a typical choice is ψ(u) = tanh(u)). This is very
similar to the technique in extended Infomax [9]. It enforces
κ̂i = |ki| > 0, and the positive definiteness of H̃ . In practice,
if for any signal i the sign of ki changes from one iteration to
the next, L-BFGS’s memory is flushed.

Regularization: The switching technique guarantees that
the Hessian approximation is positive, but one may be wary
of very small values of κ̂i + κ̂j . Hence, the pre-conditioner
uses a floor: max((κ̂i + κ̂j)/2, κmin) for some small positive
value of κmin (typically κmin ' 10−2).

Line search: A backtracking line search helps conver-
gence. Using the search directionD returned by L-BFGS, and
starting from a step size α = 1, if L(exp(αD)W ) < L(W ),
then set E = αD and W ← exp(E)W , otherwise divide α by
2 and repeat.

Stopping: The stopping criterion is ||G−G>|| < ε where
ε is a small tolerance constant.

Combining these ideas, we obtain the Preconditioned In-
dependent Component Analysis for Real Data-Orthogonal
(Picard-O) algorithm, summarized in table 2.

The Python code for Picard-O is available online at
https://github.com/pierreablin/picard.

4. LINK WITH FASTICA

This section briefly examines the connections between Picard-
O and symmetric FastICA [10]. In particular, we show that
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Algorithm 1: Two-loop recursion L-BFGS formula
Input : Current gradient Gk, moments κ̂i, previous

El, ∆l, ρl ∀l ∈ {k −m, . . . , k − 1}.
Set Q = −(Gk −G>k )/2;
for l=k-1,. . . ,k-m do

Compute al = ρl〈El|Q〉 ;
Set Q = Q− al∆i ;

end
Compute D as Dij = Qij/max

(
κ̂i+κ̂j

2 , κmin

)
;

for l=k-m,. . . ,k-1 do
Compute β = ρl〈∆l|D〉 ;
Set D = D + El(al − β) ;

end
Output: Descent direction D

Algorithm 2: The Picard-O algorithm
Input : Initial signals X , number of iterations K
Sphering: compute W0 by (1) and set Y = W0X;
for k = 0 · · ·K do

Compute the signs sign(ki) ;
Flush the memory if the sign of any source has

changed ;
Compute the gradient Gk ;
Compute search direction Dk using algorithm 1 ;
Compute the step size αk by line search ;
Set Wk+1 = exp(αkDk)Wk and Y = Wk+1X ;
Update the memory;

end
Output: Unmixed signals Y , unmixing matrix Wk

both methods essentially share the same solutions and that
the behavior of FastICA is similar to a quasi-Newton method.

Recall that FastICA is based on an N × N matrix C(Y )
defined entry-wise by:

Cij(Y ) = Ê[ψi(yi)yj ]− δijÊ[ψ′i(yi)] . (14)

The symmetric FastICA algorithm, starting from white sig-
nals Y , can be seen as iterating Y ← Cw(Y )Y until conver-
gence, where Cw(Y ) is the orthogonal matrix computed as

Cw(Y ) = (CC>)−
1
2C . (15)

In the case of a fixed score function, a sign-flipping phe-
nomenon appears leading to the following definition of a fixed
point: Y is a fixed point of FastICA if Cw(Y ) is a diagonal
matrix of ±1 [11]. This behavior can be fixed by changing
the score functions as in (13). It is not hard to see that, if
ψ is an odd function, such a modified version has the same
trajectories as the fixed score version (up to to irrelevant sign
flips), and that the fixed points of the original algorithm now
all verify Cw(Y ) = IN .

Stationary points : We first relate the fixed points of Fas-
tICA (or rather the sign-adjusted version described above) to
the stationary points of Picard-O.

Denote C+ (resp. C−) the symmetric (resp. skew-
symmetric) part of C(Y ) and similarly for G. It follows
from (6) and (14) that

C = C+ + C− = C+ +G−

since C− = G− = (G−G>)/2.
One can show that Y is a fixed point of FastICA if and

only if G(Y ) is symmetric and C+(Y ) is positive definite.
Indeed, at a fixed point,Cw(Y ) = IN , so that by Eq. (15), one
has C(Y ) = (CC>)1/2 which is a positive matrix (almost
surely). Conversely, if G(Y ) is symmetric, then so is C(Y ).
If C(Y ) is also positive, then its polar factor Cw(Y ) is the
identity matrix, so that Y is a fixed point of FastICA.

The modification of FastICA ensures that the diagonal of
C(Y ) is positive, but does not guarantee positive definite-
ness. However, we empirically observed that on each dataset
used in the experiments, the matrixC+(Y ) is positive definite
when G−(Y ) is small. Under that condition, we see that the
stationary points of Picard-O, characterized by G−(Y ) = 0
are exactly the fixed points of FastICA.

Asymptotic behavior of FastICA : Let us now expose the
behavior of FastICA close to a fixed point i.e. whenCw(Y ) =
exp(E) for some small skew-symmetric matrix E .

At first order in E , the polar factor Cw = exp(E) of C is
obtained as solution of (proof omitted):

G− =
C+E + EC+

2
. (16)

Denote by Ĥ the linear mapping Ĥ : E → −C+E+EC+

2 .
When FastICA perform a small move, it is (at first order) of
the form W ← eDW with D = −Ĥ−1(G−). It corresponds
to a quasi-Newton step with Ĥ as approximate Hessian.

Furthermore, under the mixture model assumption, close
from separation and with a large number of samples, C+ be-
comes the diagonal matrix of coefficients δij κ̂i and Ĥ simpli-
fies, giving the same direction D given in (12).

In summary, we have shown that a slightly modified ver-
sion of FastICA (with essentially the same iterates as the orig-
inal algorithm) has the same fixed points as Picard-O. Close
to such a fixed point, each of FastICA’s iteration is similar to
a quasi-Newton step with an approximate Hessian. This ap-
proximation matches the true Hessian if the mixture model
holds, but this cannot be expected in practice on real data.

5. EXPERIMENTS

This section illustrates the relative speeds of FastICA and
Picard-O. Both algorithms are coded in the Python program-
ming language. Their computation time being dominated by
score evaluations, dot products and sample averages, a fair
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comparison is obtained by ensuring that both algorithms call
the exact same procedures so that speeds differences mostly
stems from algorithmics rather than implementation.

Figure 1 summarizes our results. It shows the evolution of
the projected gradient norm ||G−G>|| versus iterations (left
column) and versus time (right column). The 4 rows corre-
spond to 4 data types: synthetic mixtures, fMRI signals, EEG
signals, and image patches. FastICA and Picard-O speeds are
compared using ψ(·) = tanh(·). The signals are centered and
whitened before running ICA.

Experiments are repeated several times for each setup.
The solid line shows the median of the gradient curves and
the shaded area shows the 10 % − 90 % percentile (meaning
that half the runs completed faster than the solid line and that
80% have convergence curves in the shaded area).

Synthetic data We generate N = 50 i.i.d. sources of
length T = 10000. The 25 first sources follow a uniform
law between −1 and 1, the 25 last follow a Laplace law
(p ∝ exp(−|x|)). The N × T source matrix S is multiplied
by a random square mixing matrix A. This experiment is
repeated 100 times, changing each time the seed generating
the signals and the mixing matrix.

fMRI This is functional MRI data processed by group
ICA [12]. The datasets come from ADHD-200 consor-
tium [13]. The problem is of size N = 60, T = 60000,
and the experiments are repeated over 20 datasets.

EEG ICA is applied on 13 publicly available1 electroen-
cephalography datasets [14]. Each recording contains N =
71 signals, of length T ' 75000.

Image patches We use a database of 80 different images of
open country [15]. From each image, T = 10000 patches
of size 8 × 8 are extracted and vectorized to obtain N = 64
signals, before applying ICA.

Results. FastICA is slightly faster than Picard-O on the sim-
ulated problem, for which the ICA mixture model holds per-
fectly. However, on real data, the rate of convergence of Fas-
tICA is severely impaired because the underlying Hessian ap-
proximation is far from the truth, while our algorithm still
converges quickly. Picard-O is also more consistent in its con-
vergence pattern, showing less spread than FastICA.

6. DISCUSSION

In this paper, we show that, close from its fixed points, Fas-
tICA’s iterations are similar to quasi-Newton steps for max-
imizing a likelihood. Furthermore, the underlying Hessian
approximation matches the true Hessian of the problem if the

1https://sccn.ucsd.edu/wiki/BSSComparison

0 5 10 15 2010-8

10-5

10-2

0.0 0.2 0.4 0.6

0 200 400 60010-8

10-5

10-2

0 5 10 15 20 25

0 500 1000 150010-8

10-5

10-2

0 30 60 90 120

0 2000 4000
Iterations

10-8

10-5

10-2

0 20 40 60 80
Time (sec.)

FastICA Picard-O

P
ro

je
ct

ed
 g

ra
di

en
t n

or
m

fMRI

Synth

Img

EEG

Fig. 1. Comparison between FastICA and Picard-O. Gradient
norm vs iterations (left column) and vs time (right column).
From top to bottom: simulated data, fMRI data, EEG data and
image data. Solid line corresponds to the median of the runs,
the shaded area covers the 10%− 90% percentiles.

signals are independent. However, on real datasets, the in-
dependence assumption never perfectly holds. Consequently,
FastICA may converge very slowly on applied problems [16]
or can get stuck in saddle points [17]. In [18], an exact line-
search technique is proposed to accelerate FastICA, but it
only works with a specific score function ψ(x) = x3, and
does not provide better descent directions.

We propose the Picard-O algorithm: as an extension
of [5], it uses a preconditioned L-BFGS technique to build a
good Hessian approximation and solve the same minimiza-
tion problem as FastICA. Extensive experiments on three
types of real data demonstrate that Picard-O can be orders of
magnitude faster than FastICA.

4467



7. REFERENCES

[1] P. Comon, “Independent component analysis, a new
concept?” Signal Processing, vol. 36, no. 3, pp. 287
– 314, 1994.

[2] A. Hyvarinen, “Fast and robust fixed-point algorithms
for independent component analysis,” IEEE Transac-
tions on Neural Networks, vol. 10, no. 3, pp. 626–634,
1999.

[3] E. Oja and Z. Yuan, “The fastica algorithm revisited:
Convergence analysis,” IEEE Transactions on Neural
Networks, vol. 17, no. 6, pp. 1370–1381, 2006.

[4] H. Shen, M. Kleinsteuber, and K. Huper, “Local con-
vergence analysis of FastICA and related algorithms,”
IEEE Transactions on Neural Networks, vol. 19, no. 6,
pp. 1022–1032, 2008.

[5] P. Ablin, J.-F. Cardoso, and A. Gramfort, “Faster in-
dependent component analysis by preconditioning with
hessian approximations,” Arxiv Preprint, 2017.

[6] D. T. Pham and P. Garat, “Blind separation of mixture
of independent sources through a quasi-maximum likeli-
hood approach,” IEEE Transactions on Signal Process-
ing, vol. 45, no. 7, pp. 1712–1725, 1997.

[7] W. Bertram, “Differential Geometry, Lie Groups and
Symmetric Spaces over General Base Fields and Rings,”
Memoirs of the American Mathematical Society, 2008.

[8] J.-F. Cardoso, “On the stability of some source separa-
tion algorithms,” in Proc. of the 1998 IEEE SP workshop
on neural networks for signal processing (NNSP ’98),
1998, pp. 13–22.

[9] T.-W. Lee, M. Girolami, and T. J. Sejnowski, “Inde-
pendent component analysis using an extended info-
max algorithm for mixed subgaussian and supergaussian
sources,” Neural computation, vol. 11, no. 2, pp. 417–
441, 1999.

[10] A. Hyvärinen, “The fixed-point algorithm and maxi-
mum likelihood estimation for independent component
analysis,” Neural Processing Letters, vol. 10, no. 1, pp.
1–5, 1999.

[11] T. Wei, “A convergence and asymptotic analysis of the
generalized symmetric FastICA algorithm,” IEEE trans-
actions on signal processing, vol. 63, no. 24, pp. 6445–
6458, 2015.

[12] G. Varoquaux, S. Sadaghiani, P. Pinel, A. Kleinschmidt,
J.-B. Poline, and B. Thirion, “A group model for sta-
ble multi-subject ICA on fMRI datasets,” Neuroimage,
vol. 51, no. 1, pp. 288–299, 2010.

[13] A.-. Consortium, “The ADHD-200 consortium: a model
to advance the translational potential of neuroimaging
in clinical neuroscience,” Frontiers in systems neuro-
science, vol. 6, 2012.

[14] A. Delorme, J. Palmer, J. Onton, R. Oostenveld, and
S. Makeig, “Independent EEG sources are dipolar,”
PloS one, vol. 7, no. 2, p. e30135, 2012.

[15] A. Oliva and A. Torralba, “Modeling the shape of the
scene: A holistic representation of the spatial envelope,”
International journal of computer vision, vol. 42, no. 3,
pp. 145–175, 2001.

[16] P. Chevalier, L. Albera, P. Comon, and A. Ferréol,
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