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ABSTRACT consists of two parts: direct path speech and reverbestion

The performance of deep neural network (DNN) based monaW— this paper, we use geometnc information to desprlbe the
{grget speaker and microphone to calculate the direct path

ral speech separation methods is limited in reverberant an

noisy room environments. In this paper, we propose a r]e\;vmpulse response, which is used to estimate the direct path

DNN training target which incorporates geometric informa-SpeeCh' By using the direct path speech, we propose the DRM

tion describing the target speaker and microphone to irrlzorothICh improves performance in noisy and reverberant reom

the performance in reverberant and noisy room environmentgnv'ronmems' . . .

The experiments are based on the IEEE corpus and the NOI- The rest. of the paperis organized as fo]lows. In Sectlon
SEX database and real impulse responses (RIRs). The o  we describe the noisy reverbera_n'_[ and direct path |rr_1pulse
jective evaluations, short-time objective intelligibili{(STOI) response model and new DNN training target. In Section 3,

and perceptual evaluation of speech quality (PESQ) confirrﬂr‘e (alxpgrlmenta:jsetup ané:ifretsults arﬁ .shown. I? iectlon 4
the efficiency of the proposed direct path ratio mask (DRM).Conc usions are drawn, and future work is suggested.

Index Terms— deep neural network, speech separation,
geometric information, noisy reverberant speech mixtdie,
rect path ratio mask

2. ALGORITHM DESCRIPTION

2.1. Mixture Model and Direct Path Impulse Response

1. INTRODUCTION The reverberant speech mixture can be modelled as the con-
volution result of the speech source and impulse response as
Speech separation has various applications such as hearing
aids and automatic speech recognition (ASR) [1]. Neverthe- y(t) = s(t) * h(t) )

less, the performance of state-of-the-art of speech sépara .
L P -where %’ represents the convolution operatg(t) denotes

methods is limited in real reverberant and noisy room envi-
ronments [2]. the reverberant speect(t) represents the speech source and

In the last decade, the statistical signal processing arﬁ(t>d'sdthi w:;\pu(;s_e r?sp?r?se.d Tr:‘le nppulse response can be

computational auditory scene analysis (CASA) based met livided into the direct path and refiections as.

ods are applied to solve the speech separation problem.[3—7]
. h(t) = hp(t hr(t 2

Nowadays, the DNN based methods are common. Jiang et (8) = hp(t) + hr(t) 2)

al. converted the spe(_ech separatlon toa b_|nary c_Iassm‘lcatl wherehp(t) is the impulse response of the direct path and

problem and the DNN is applied to form the ideal binary mask;, . +) genotes the impulse response of reflections.

(IBM) [8]. The adaptive discriminative criterion is appdiéo The geometric information provides the distance and bear-

the DNN, which provides a better separation performance [9},g pefween the speech source and the microphone, which

Narayanan et al. proposed the ideal ratio mask (IRM) that ife g to estimate direct path impulse response. The direct

arobust training target for the DNN [10]. Wang et al. make &), impulse response, as shown in Fig. 1, is calculated as:
comparison between the different training targets andehe r

sults show the masking based targets outperform the spectra K 0 fs

envelope based targets [2]. The IRM is more accurate than D (t) = Bo(t —7) = ﬁ“’s(_)‘s (t - 5d> @)

the IBM, particularly for the speech denoising problem [10]

Although, the IRM has many merits, new training targets thatvhere 5 denotes the attenuation raig represents the unit

can better reflect the clean speech and noise are still needednpulse, x represents the attenuation per unit length in air,
Recently, enormous efforts have been dedicated to derendd is the distance between the speech source and micro-

verberation and denoising. The reverberant speech eslbenti phone. The parametér represents the angle between the

r
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Roficetions inputs: (1) the estimated direct path spedg}{t) based on
the DRM, (2) direct path impulse responsg based on ge-
ometric information. The final time domain separated speech
source is calculated as:

3() = IFFT [(Sp(t.0) (Ho(t. 1) "] (®)

where the IFFT represents the inverse fast Fourier tramsfor
operation.

2.4. System Architecture

Reflections

Fig. 1: Monaural speech separation setup within a reverberant moin ~ The system architecture is shown in Fig. 2. The geometric
ronment, the distance and angle between the target speatteseasor are  jnformation of the target speaker and microphone for monau-
shown. ral speech separation can be obtained from our multiple hu-
man tracking systems [12, 13], which are successfully used
speech source and microphone, arislthe directionality co- in multimodal binaural and overdetermined speech separa-
efficient. Besidest is the propagation timef, is the sample tion [14,15]. At the training stage, the geometric inforioat

frequency, and’ denotes the sound velocity in air. is applied to generate the proposed DRM and at the testing
Based on the distributive property of convolution, the re-stage, the trained DNN with geometric information is used to
verberant speech mixture can be represented as [11]: estimate the final desired speech signal.
y(t) = s(t) * hp(t) + s(t) = hr(t) :
Geometpc Direct Path
— SD(t) 4 SR(t) (4) Information Impulsefesponse
wheres (¢) is the direct path speech asg(t) includesonly  |i Convlition ———
reverberations. To simulate the real room environment, thy: gDt Module Speech i
reverberant speech mixture with noises is provided as: 5 l ;
E Feature DNN E
y(t) = sp(t) + sr(t) + an(t) (5) P Hxiracton i
i Training Stage '
wheren(t) denotes the noise at timigande is used to control |7~ T e ;
the SNR level between speech and noise. | —— Eimr;n DRM Rec:}::;c:;ﬁm i
2.2. Training Targets o TestingStage e
By using (3) and (5), the DRM can be calculated as: sp‘:?;lngﬁm
) S2 t, f n Fig. 2: The block digram of the propose reverberant and noisy speeud-
DRM(t, f) = 5 bl f)2 (6) ration system.

whereS? (¢, f) denotes the energy of the direct path speech

attimet and frequency framg, andN2(¢, f) is the energy of 3. EXPERIMENTAL EVALUATIONS

noise. Andy is the tunable parameter to scale the mask. The

proposed DRM is used as a training target, which requireg.1. Datasets

less accuracy in the separation of noisy reverberant speech ) .
mixture, because the DRM mitigates reflections and noisel he speech signals are selected from the IEEE corpus which

The direct path impulse response based speech is estimafentains 720 utterances [16]. 500 utterances are usedémgen
as: rate the training data samples, 100 utterances are apglied a

Sp(t, f) =Y(t, f)DRM(t, f) (7)  development data and 120 utterances are exploited to gener-
ate the testing data. factory noise and babble noise are used
as background noise, which are selected from the NOISEX
datasbase, and both of them are non-stationary [17]. The
Since the DRM can only separate the direct path signal frordirect path impulse responses are obtained by using the ge-
the noisy reverberant mixture, the speech reconstruct@mhm ometric information, which is assumed to be avaiable and
ule is used to separate the desired speech source. At the testin be estimated from our previous multimodal human track-
ing stage of the speech reconstruction module, there are twing systems [13, 14]. The simulated and real room impulse

2.3. Speech Reconstruction
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Fig. 3: Averaged STOI scores of 120 experiments for unprocessedtresant signals, the IRM [2] and the proposed DRM systertis sinulated impulse
responses, subfigure:(a) 3 dB factory noise, (b) 0 dB faatoige, (c) -3 dB factory noise, (d) 3 dB babble noise, (e) 0 éBhte noise and (f) -3 dB babble
noise.

; Ant  SNR Level 3dB 0dB -3dB
responses_ (RIRS) are US_Ed to generate the noisy reverbefl RT60(s) Targets | factory | babble| factory | babble| factory | babble
speech mixtures. The simulated RIRs are generated by the Unprocessed 0.92 | 1.06 | 0.65 | 0.87 | 0.48 | 052
image method [18]. The room dimensions are &b m x 0.3 IRM 2.40 | 245 | 195 | 225 | 172 | 203
3 d the t t d mi h I ted at 55 DRM 2.49 2.50 2.05 2.35 1.83 2.19

m, and the target source and microphone are located at 5o~ " Unprocessed 0.64 | 0.83 | 051 | 068 | 045 | 0.55
mx 2.5mx 1.5mand 4.5 nx 2.5 mx 1.5 m, respectively. : IRM 189 | 218 | 1.69 | 2.00 | 1.48 | 1.83
e : H e DRM 2.05 2.25 1.79 2.12 1.60 1.95

The RT60 is increased from0.3st00.9 s w[th thg s.tepS|ze [ Unrocessed 050 | 0:64 | 047 | 055 | 044 | 052
0.2 s. The database recorded by Surrey University is used for TRM 174 | 1.92 | 1.55 | 1.74 | 1.31 | 1.62
the real RIRs [19], and the RT60s are 0.32 s, 0.47 s and 0.68 . DRM é-ig g-éé égé (1)-2‘7‘ (1)-‘3“1" é-ﬁ

. nprocessed . B . B . .

s. The SNR levels are setto 3 d_B, 0dBand-3dBasin[11]; 0° leM 151 T 175 | 132 | 161 | 123 146
In summary for detailed evaluation of our proposed method DRM 159 | 1.90 | 143 | 1.74 | 1.34 | 1.60

we have 21000 training samples, and 4200 testing samples.Table 1: Averaged PESQ scores of 120 experiments for the IRM and the
. . L géroposed DRM [2] systems at 3 dB, 0 dB and -3 dB SNR levels. Tigyn
The separation performance is evaluated quantitatively by erberant speech mixtures are obtained by using the IBEiIs and the

two measures, they are STOI and PESQ [20, 21]. The STQéctory and the babble background noise under simulatedigapesponses.
ranges from O to 1, where 0 means the worst intelligibilitg an The bold numbers represent the best performance.
1 means the best intelligibility, and it has high correlatiath

human speech intelligibility scores [11]. The PESQ ranges, o which is measured by the mean squared error (MSE)
from -0.5 to 4.5, where -0.5 represents the lowest perclaptu%?st’function

evaluation of speech quality and 4.5 represents the highes A complementary set of features is applied [11]. These

quality. features are mel-frequency cepstral coefficient (MFCQ@¢sp
tral transform and perceptual linear prediction (RASTAFPL
3.2. DNN Settings and Speech Features and amplitude modulation spectrum (AMS), and they are spec-
trum based features [2, 22]. Also, the deltas of RASTA-PLP,

The DNN includes four hidden layers, and every hidden layepms and MFCC are appended to the features. The features
has 1024 units. The rectified linear unit (ReLU) function iSare normalized to zero mean and unit variance.

used as the activation function of each unit at hidden layers

and the a}ctivation function of the o_utput unit is the sigmoid 3.3. Evaluations with Synthetic RIRs
The maximum number of epochs is 50. The dropout is ap-
plied to solve the over-fitting problem, and the rate of dniapo The IRM is used as the benchmark. Table 1 and Fig. 3 show
is 0.2 [2]. The parameters of the DNN are initialized by ran-the PESQ and the STOI values of unprocessed and processed
dom initialization, then they are optimized at every epogh b signals with different background noise and RT60s. In Ta-
using adaptive subgradient descent algorithm that ha$50.0Mle 1, the bold numbers represent the best separation perfor
learning rate. After 50 epochs, the epoch with minimum costnance.

function value is selected to perform the speech separation In terms of PESQ, both the IRM and the proposed DRM
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Fig. 4: Averaged STOI scores of 120 experiments for unprocesseduesant signals, the IRM [2] and the proposed DRM systerttsieal impulse responses,
subfigure: (a) 3 dB factory noise, (b) 0 dB factory noise, &3jIB factory noise, (d) 3 dB babble noise, (e) 0 dB babble rak(f) -3 dB babble noise.

; ; ; ; SNR Level 3dB 0dB 3dB
Eég;:%if;nrlsgzir;bl_?;]gEig\éi?sgtgéz tohl.let;glggorl?nesstsh?lgol\ll RT60(s) Targets factory | babble| factory | babble| factory | babble
. Unprocessed 1.02 1.25 0.74 0.99 0.56 0.78
- . 0.32
at all RT60s. And the best PESQ performance is obtained by IRM 231 | 2.65 | 224 | 251 | 1.99 | 231
DRM 242 | 270 | 237 | 257 | 211 | 239
the DRM at the lowest RT60 (0.3 s). For example, at -3 dB Unprocessed 0.64 | 0.85 | 0.49 | 0.67 | 0.41 | 057
SNR level with factory noise, the proposed method obtaing ®*’ IRM 217 | 243 | 199 | 231 | 180 | 214
: DRM 228 | 253 | 211 | 240 | 1.89 | 221
the PESQ-lmprovements over the IRM as 0.16, 0.12, Q.l " oes | Unbrocessed 074 | 0.91 | 0.69 | 080 | 052 | 0L
0.14 at different RT60s (0.3 s,0.5 5, 0.7 s, 0.9 S), respygtiv : TRM 221 | 249 | 200 | 224 | 1.79 | 213
Because the higher RT60 increases the complexity in nois DRM 233 | 251 | 211 | 242 | 192 | 222
reverberant speech mixture, the PESQ-improvement with th@ble 2: Averaged PESQ scores of 120 experiments for the IRM [2] aed th

. . roposed DRM systems at 3 dB, 0 dB and -3 dB SNR levels. Thg neier-
lower RT60 (0.3 s) is better than the higher RT60 (0.9 S)perant speech mixtures are obtained by using the IEEE canmithe factory
Since the noise has less effect in higher SNR levels speeeind the babble background noise under real recorded immspenses. The

mixtures, the speech separation performance will be better Pold numbers represent the best performance.
In terms of STOI scores, it is similar with the trend of
PESQ. The DRM and the IRM improve the STOI scores, and
the average improvement of the DRM over the IRM is ap+everberant mixture in both simulated and real room envi-
proximately 0.021. ronments effectively. The proposed method outperforms the
state-of-the-art method [2].

3.4. Evaluations with Real RIRs

Fig. 4 and Table 2 show the evaluation performance of the
proposed approach and the IRM with the real impulse re-
sponses. For the STOI performance, the average STOI im-
provement of the DRM over the IRM is 0.20. When compar- . o ) .
ing with STOI at different RT60s (0.32 s, 0.47 s), the higher/Ve exploited the geometric information to provide the po-
RT60 (0.47 s) causes worse separation performance, due $8ion of the target speaker and microphone to estimate the
higher complexity. Besides, the direct to reverberanorati diréct path impulse response, which is used to calculate the
(DDR) has positive effect on separation performance. For indiréct path speech. Based on the direct path speech, we calcu
stance, by using the DRM, when the RT60 is 0.68, the perl_ated the DRM that is a new training target. The experimental
formance is better than the one with lower RT60 (0.47 s), dugesults confirmed the DRM outperforms the state-of-the-art
to the influence of DDR, which strongly justifies another ad-method.
vantage of the geometric information based approach. PESQ In this study, the speaker position is physical stationary.
performance is consistent with STOI performance. For future research, more effort will be dedicated to imgrov

In summary, the above experimental results confirm theéhe current proposed method for DNN based monaural speech
proposed method can separate the target speech from tlye nadgparation for a moving source.

4. CONCLUSIONS AND FUTURE WORK
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