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ABSTRACT

The performance of deep neural network (DNN) based monau-
ral speech separation methods is limited in reverberant and
noisy room environments. In this paper, we propose a new
DNN training target which incorporates geometric informa-
tion describing the target speaker and microphone to improve
the performance in reverberant and noisy room environments.
The experiments are based on the IEEE corpus and the NOI-
SEX database and real impulse responses (RIRs). The ob-
jective evaluations, short-time objective intelligibility (STOI)
and perceptual evaluation of speech quality (PESQ) confirm
the efficiency of the proposed direct path ratio mask (DRM).

Index Terms— deep neural network, speech separation,
geometric information, noisy reverberant speech mixture,di-
rect path ratio mask

1. INTRODUCTION

Speech separation has various applications such as hearing
aids and automatic speech recognition (ASR) [1]. Neverthe-
less, the performance of state-of-the-art of speech separation
methods is limited in real reverberant and noisy room envi-
ronments [2].

In the last decade, the statistical signal processing and
computational auditory scene analysis (CASA) based meth-
ods are applied to solve the speech separation problem [3–7].
Nowadays, the DNN based methods are common. Jiang et
al. converted the speech separation to a binary classification
problem and the DNN is applied to form the ideal binary mask
(IBM) [8]. The adaptive discriminative criterion is applied to
the DNN, which provides a better separation performance [9].
Narayanan et al. proposed the ideal ratio mask (IRM) that is
a robust training target for the DNN [10]. Wang et al. make a
comparison between the different training targets and the re-
sults show the masking based targets outperform the spectral
envelope based targets [2]. The IRM is more accurate than
the IBM, particularly for the speech denoising problem [10].
Although, the IRM has many merits, new training targets that
can better reflect the clean speech and noise are still needed.

Recently, enormous efforts have been dedicated to dere-
verberation and denoising. The reverberant speech essentially

consists of two parts: direct path speech and reverberations.
In this paper, we use geometric information to describe the
target speaker and microphone to calculate the direct path
impulse response, which is used to estimate the direct path
speech. By using the direct path speech, we propose the DRM
which improves performance in noisy and reverberant room
environments.

The rest of the paper is organized as follows. In Section
2, we describe the noisy reverberant and direct path impulse
response model and new DNN training target. In Section 3,
the experimental setup and results are shown. In Section 4,
conclusions are drawn, and future work is suggested.

2. ALGORITHM DESCRIPTION

2.1. Mixture Model and Direct Path Impulse Response

The reverberant speech mixture can be modelled as the con-
volution result of the speech source and impulse response as:

y(t) = s(t) ∗ h(t) (1)

where ‘∗’ represents the convolution operator,y(t) denotes
the reverberant speech,s(t) represents the speech source and
h(t) is the impulse response. The impulse response can be
divided into the direct path and reflections as:

h(t) = hD(t) + hR(t) (2)

wherehD(t) is the impulse response of the direct path and
hR(t) denotes the impulse response of reflections.

The geometric information provides the distance and bear-
ing between the speech source and the microphone, which
helps to estimate direct path impulse response. The direct
path impulse response, as shown in Fig. 1, is calculated as:

hD(t) = βδ(t − τ) =
κ
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whereβ denotes the attenuation rate,δ represents the unit
impulse,κ represents the attenuation per unit length in air,
andd is the distance between the speech source and micro-
phone. The parameterθ represents the angle between the
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Fig. 1: Monaural speech separation setup within a reverberant roomenvi-
ronment, the distance and angle between the target speaker and sensor are
shown.

speech source and microphone, andr is the directionality co-
efficient. Besides,τ is the propagation time,fs is the sample
frequency, andC denotes the sound velocity in air.

Based on the distributive property of convolution, the re-
verberant speech mixture can be represented as [11]:

y(t) = s(t) ∗ hD(t) + s(t) ∗ hR(t)

= sD(t) + sR(t) (4)

wheresD(t) is the direct path speech andsR(t) includes only
reverberations. To simulate the real room environment, the
reverberant speech mixture with noises is provided as:

y(t) = sD(t) + sR(t) + αn(t) (5)

wheren(t) denotes the noise at timet, andα is used to control
the SNR level between speech and noise.

2.2. Training Targets

By using (3) and (5), the DRM can be calculated as:

DRM(t, f) =

(

S2

D(t, f)

S2

D(t, f) +N2(t, f)

)η

(6)

whereS2

D(t, f) denotes the energy of the direct path speech
at timet and frequency framef , andN2(t, f) is the energy of
noise. Andη is the tunable parameter to scale the mask. The
proposed DRM is used as a training target, which requires
less accuracy in the separation of noisy reverberant speech
mixture, because the DRM mitigates reflections and noise.
The direct path impulse response based speech is estimated
as:

ŜD(t, f) = Y (t, f)DRM(t, f) (7)

2.3. Speech Reconstruction

Since the DRM can only separate the direct path signal from
the noisy reverberant mixture, the speech reconstruction mod-
ule is used to separate the desired speech source. At the test-
ing stage of the speech reconstruction module, there are two

inputs: (1) the estimated direct path speechŝD(t) based on
the DRM, (2) direct path impulse responsehD based on ge-
ometric information. The final time domain separated speech
source is calculated as:

ŝ(t) = IFFT
[(

ŜD(t, f)
)

(HD(t, f))
−1

]

(8)

where the IFFT represents the inverse fast Fourier transform
operation.

2.4. System Architecture

The system architecture is shown in Fig. 2. The geometric
information of the target speaker and microphone for monau-
ral speech separation can be obtained from our multiple hu-
man tracking systems [12, 13], which are successfully used
in multimodal binaural and overdetermined speech separa-
tion [14,15]. At the training stage, the geometric information
is applied to generate the proposed DRM and at the testing
stage, the trained DNN with geometric information is used to
estimate the final desired speech signal.

Fig. 2: The block digram of the propose reverberant and noisy speechsepa-
ration system.

3. EXPERIMENTAL EVALUATIONS

3.1. Datasets

The speech signals are selected from the IEEE corpus which
contains 720 utterances [16]. 500 utterances are used to genen-
rate the training data samples, 100 utterances are applied as
development data and 120 utterances are exploited to gener-
ate the testing data. factory noise and babble noise are used
as background noise, which are selected from the NOISEX
datasbase, and both of them are non-stationary [17]. The
direct path impulse responses are obtained by using the ge-
ometric information, which is assumed to be avaiable and
can be estimated from our previous multimodal human track-
ing systems [13, 14]. The simulated and real room impulse
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Fig. 3: Averaged STOI scores of 120 experiments for unprocessed reverberant signals, the IRM [2] and the proposed DRM systems with simulated impulse
responses, subfigure:(a) 3 dB factory noise, (b) 0 dB factorynoise, (c) -3 dB factory noise, (d) 3 dB babble noise, (e) 0 dB babble noise and (f) -3 dB babble
noise.

responses (RIRs) are used to generate the noisy reverberant
speech mixtures. The simulated RIRs are generated by the
image method [18]. The room dimensions are 9 m× 5 m×
3 m, and the target source and microphone are located at 5.5
m× 2.5 m× 1.5 m and 4.5 m× 2.5 m× 1.5 m, respectively.
The RT60 is increased from 0.3 s to 0.9 s with the stepsize of
0.2 s. The database recorded by Surrey University is used for
the real RIRs [19], and the RT60s are 0.32 s, 0.47 s and 0.68
s. The SNR levels are set to 3 dB, 0 dB and -3 dB as in [11].
In summary for detailed evaluation of our proposed method,
we have 21000 training samples, and 4200 testing samples.

The separation performance is evaluated quantitatively by
two measures, they are STOI and PESQ [20, 21]. The STOI
ranges from 0 to 1, where 0 means the worst intelligibility and
1 means the best intelligibility, and it has high correlation with
human speech intelligibility scores [11]. The PESQ ranges
from -0.5 to 4.5, where -0.5 represents the lowest perceptual
evaluation of speech quality and 4.5 represents the highest
quality.

3.2. DNN Settings and Speech Features

The DNN includes four hidden layers, and every hidden layer
has 1024 units. The rectified linear unit (ReLU) function is
used as the activation function of each unit at hidden layers
and the activation function of the output unit is the sigmoid.
The maximum number of epochs is 50. The dropout is ap-
plied to solve the over-fitting problem, and the rate of dropout
is 0.2 [2]. The parameters of the DNN are initialized by ran-
dom initialization, then they are optimized at every epoch by
using adaptive subgradient descent algorithm that has 0.005
learning rate. After 50 epochs, the epoch with minimum cost
function value is selected to perform the speech separation

SNR Level 3 dB 0 dB -3 dB
RT60(s) Targets factory babble factory babble factory babble

0.3
Unprocessed 0.92 1.06 0.65 0.87 0.48 0.52

IRM 2.40 2.45 1.95 2.25 1.72 2.03
DRM 2.49 2.50 2.05 2.35 1.83 2.19

0.5
Unprocessed 0.64 0.83 0.51 0.68 0.45 0.55

IRM 1.89 2.18 1.69 2.00 1.48 1.83
DRM 2.05 2.25 1.79 2.12 1.60 1.95

0.7
Unprocessed 0.50 0.64 0.47 0.55 0.44 0.52

IRM 1.74 1.92 1.55 1.74 1.31 1.62
DRM 1.85 2.11 1.61 1.94 1.44 1.78

0.9
Unprocessed 0.40 0.60 0.35 0.47 0.31 0.41

IRM 1.51 1.75 1.32 1.61 1.23 1.46
DRM 1.59 1.90 1.43 1.74 1.34 1.60

Table 1: Averaged PESQ scores of 120 experiments for the IRM and the
proposed DRM [2] systems at 3 dB, 0 dB and -3 dB SNR levels. The noisy
reverberant speech mixtures are obtained by using the IEEE corpus and the
factory and the babble background noise under simulated impulse responses.
The bold numbers represent the best performance.

task, which is measured by the mean squared error (MSE)
cost function.

A complementary set of features is applied [11]. These
features are mel-frequency cepstral coefficient (MFCC), spec-
tral transform and perceptual linear prediction (RASTA-PLP)
and amplitude modulation spectrum (AMS), and they are spec-
trum based features [2, 22]. Also, the deltas of RASTA-PLP,
AMS and MFCC are appended to the features. The features
are normalized to zero mean and unit variance.

3.3. Evaluations with Synthetic RIRs

The IRM is used as the benchmark. Table 1 and Fig. 3 show
the PESQ and the STOI values of unprocessed and processed
signals with different background noise and RT60s. In Ta-
ble 1, the bold numbers represent the best separation perfor-
mance.

In terms of PESQ, both the IRM and the proposed DRM
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Fig. 4: Averaged STOI scores of 120 experiments for unprocessed reverberant signals, the IRM [2] and the proposed DRM systems with real impulse responses,
subfigure: (a) 3 dB factory noise, (b) 0 dB factory noise, (c) -3 dB factory noise, (d) 3 dB babble noise, (e) 0 dB babble noiseand (f) -3 dB babble noise.

provide considerable improvement over the unprocessed noisy
reverberant signal. The proposed DRM outperforms the IRM
at all RT60s. And the best PESQ performance is obtained by
the DRM at the lowest RT60 (0.3 s). For example, at -3 dB
SNR level with factory noise, the proposed method obtains
the PESQ-improvements over the IRM as 0.16, 0.12, 0.16,
0.14 at different RT60s (0.3 s, 0.5 s, 0.7 s, 0.9 s), respectively.
Because the higher RT60 increases the complexity in noisy
reverberant speech mixture, the PESQ-improvement with the
lower RT60 (0.3 s) is better than the higher RT60 (0.9 s).
Since the noise has less effect in higher SNR levels speech
mixtures, the speech separation performance will be better.

In terms of STOI scores, it is similar with the trend of
PESQ. The DRM and the IRM improve the STOI scores, and
the average improvement of the DRM over the IRM is ap-
proximately 0.021.

3.4. Evaluations with Real RIRs

Fig. 4 and Table 2 show the evaluation performance of the
proposed approach and the IRM with the real impulse re-
sponses. For the STOI performance, the average STOI im-
provement of the DRM over the IRM is 0.20. When compar-
ing with STOI at different RT60s (0.32 s, 0.47 s), the higher
RT60 (0.47 s) causes worse separation performance, due to
higher complexity. Besides, the direct to reverberant ratio
(DDR) has positive effect on separation performance. For in-
stance, by using the DRM, when the RT60 is 0.68, the per-
formance is better than the one with lower RT60 (0.47 s), due
to the influence of DDR, which strongly justifies another ad-
vantage of the geometric information based approach. PESQ
performance is consistent with STOI performance.

In summary, the above experimental results confirm the
proposed method can separate the target speech from the noisy

SNR Level 3 dB 0 dB -3 dB
RT60(s) Targets factory babble factory babble factory babble

0.32
Unprocessed 1.02 1.25 0.74 0.99 0.56 0.78

IRM 2.31 2.65 2.24 2.51 1.99 2.31
DRM 2.42 2.70 2.37 2.57 2.11 2.39

0.47
Unprocessed 0.64 0.85 0.49 0.67 0.41 0.57

IRM 2.17 2.43 1.99 2.31 1.80 2.14
DRM 2.28 2.53 2.11 2.40 1.89 2.21

0.68
Unprocessed 0.74 0.91 0.69 0.80 0.52 0.61

IRM 2.21 2.49 2.00 2.24 1.79 2.13
DRM 2.33 2.51 2.11 2.42 1.92 2.22

Table 2: Averaged PESQ scores of 120 experiments for the IRM [2] and the
proposed DRM systems at 3 dB, 0 dB and -3 dB SNR levels. The noisy rever-
berant speech mixtures are obtained by using the IEEE corpusand the factory
and the babble background noise under real recorded impulseresponses. The
bold numbers represent the best performance.

reverberant mixture in both simulated and real room envi-
ronments effectively. The proposed method outperforms the
state-of-the-art method [2].

4. CONCLUSIONS AND FUTURE WORK

We exploited the geometric information to provide the po-
sition of the target speaker and microphone to estimate the
direct path impulse response, which is used to calculate the
direct path speech. Based on the direct path speech, we calcu-
lated the DRM that is a new training target. The experimental
results confirmed the DRM outperforms the state-of-the-art
method.

In this study, the speaker position is physical stationary.
For future research, more effort will be dedicated to improve
the current proposed method for DNN based monaural speech
separation for a moving source.
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