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ABSTRACT

The performance of iterative algorithms aimed at solving a regular-
ized least squares problem typically depends on the value of some
regularization parameter. Tuning the regularization parameter value
is a fundamental step necessary to control the strength of the reg-
ularization and hence ensure a good performance. We address the
problem of finding the optimal regularization parameter in such iter-
ative algorithms. We propose to adaptively adjust the regularization
parameter throughout the iterations of the algorithm by minimizing
an estimate of the current risk, typically the Weighted Stein unbi-
ased risk estimate (WSURE). We then prove that, for the case of the
Tikhonov regularization, the proposed ADAptive Parameter Tuning
(ADA-PT) strategy provides a stationary point consistent with the
risk minimizer. We illustrate the efficiency of ADA-PT on two im-
age deconvolution problems: one with the Tikhonov regularization
and one with the weighted `-1 analysis wavelet regularization.

Index Terms— Regularization parameter tuning, Stein unbiased
risk estimate (SURE), Adaptive tuning

1. INTRODUCTION

In many image and signal processing applications there is a need to
solve a linear inverse problem where the original signal is degraded
by a linear operator and additive Gaussian noise. Most of the al-
gorithms for solving these problems depart from a regularized least
squares formulation. These algorithms typically depend on regular-
ization parameters that require fine tuning in order to have satisfying
results. More formally, consider the problem of recovering a signal
x0 ∈ RN from a realization y ∈ RP of the normal random vector:

Y = µ0 +W with µ0 = φx0 (1)

where W ∼ N (0, σ2IP ) is the noise, and φ ∈ RP×N is a rank
deficient linear operator with for example P < N . The linear oper-
ator φ entails some loss of information, and the corresponding Least
squares inverse problem is ill-posed. To overcome this problem, reg-
ularization (ex: Tikhonov, Lasso, . . .) is used to promote desirable
properties in the solution. Let (y, θ) 7→ x(y, θ) be some recovery
mapping, which attempts to approach x0 from a given realization y
ofY and which is parametrized by a regularization parameter θ. Fol-
lowing the celebrated regularized least squares framework, x(y, θ)
is defined as:

x(y, θ) = argminx

{
1

2
‖y − φx‖2 + θh(x)

}
, (2)

where the squared term is the data fidelity term, h(x) is the reg-
ularization accounting for prior information, and the regularization
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parameter θ is a scaling factor controlling the strength of the regu-
larization. Choosing the value of θ is a fundamental step in order
to ensure the good performance of any iterative algorithm aimed at
solving problem (2). A relatively very small value of θ can lead to
overfitting and noise amplification, while a relatively large value of
θ can make the regularization too strong w.r.t. the data fidelity term
and harm the estimation’s quality.

Most of the literature on automatically tuning θ relies on op-
timizing quantitative measures that evaluate the quality of the es-
timated signal. These measures can be broadly classified as those
based on the discrepancy principle [1,2], the L-curve [3,4], general-
ized cross-validation (GCV) [5], the Stein Unbiased Risk Estimator
(SURE) and its weighted version (WSURE) [6, 7]. A straightfor-
ward approach for tuning θ is therefore by exhaustive search: the
algorithm is tested with various values for θ and the one giving
the best quantitative measure is considered to be the optimal one.
Among the aforementioned quantitative measures, the WSURE is
the most appealing one. The WSURE allows to unbiasedly estimate
the weighted mean square error (WMSE) between the real signal
and the estimated one solely given the observations. This means
that, on average, the optimal value for θ in the WSURE sense is the
one that recovers the signal with the smallest WMSE which is of-
ten a desired property. Finding the optimal θ is usually done using
a grid search [7, 8], or a bisection strategy such as the Golden sec-
tion [9–11], or a gradient descent [12]. These approaches require
running the iterative algorithm various times, with different values
for θ, which can be prohibitive when the algorithm is computation-
ally complex and has relatively long running time.

We propose to estimate the optimal regularization parameter in
a more computationally efficient way. Toward this goal, we propose
to estimate the optimal θ by minimizing the WSURE using a gra-
dient descent scheme similarly to [12]. Nevertheless, we require to
evaluate the output of the algorithm only once, and the value of θ
is updated at each iteration according to a gradient descent direc-
tion such that the WSURE at the current iteration is reduced. The
update of θ at each iteration requires evaluating the gradient of the
WSURE when the latter is differentiable, or an estimate of the gradi-
ent as in [12], when the WSURE is not differentiable. Furthermore,
the gradient descent scheme allows setting multiple parameters more
easily than grid search and golden section approaches. We refer to
this method as ADAptive Parameter Tuning (ADA-PT). As it will
be seen, ADA-PT can substantially reduce the computational com-
plexity compared to conventional exhaustive search since it does not
require running the iterative algorithm several times. We also prove,
that for the Tikhonov regularization, ADA-PT provides a stationary
point that is consistent with the risk minimizer. In what follows, we
briefly review the concepts underlying the SURE in section 2 and
then present our ADA-PT strategy in sections 3 and 4. Finally, in
section 5, ADA-PT is used to adjust the regularization parameters
for two image deconvolution problems.
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2. OPTIMAL PARAMETER TUNING

Choosing the parameter θ in problem (2) is a challenging and non-
trivial task. Ideally, one would like to find the optimal parameter
θ? such that µ(y, θ?) = φx(y, θ?) is as faithful as possible to µ0.
Formally, this can be cast as minimizing the WMSE:

θ? = argminθ
{
R{µ}(µ0, θ) = EW ‖µ(Y , θ)− µ0‖

2} . (3)

However, one cannot expect to solve this problem given that µ0 is
unknown. In the case of i.i.d. Gaussian noise, a practical approach
is to replace problem (3) with:

θ? = argminθR̂{µ}(y, θ), (4)

where R̂{µ}(y, θ) is the WSURE estimator of R{µ}(µ0, θ) that
does not require the knowledge of µ0. The WSURE unbiasedly es-
timates the WMSE:

EW [WSURE{µ}(Y , θ)] = R{µ}(µ0, θ), (5)

and it is defined as follows:

WSURE{µ}(y, θ) = ‖µ(y, θ)− y‖2 + 2σ2tr(∂1µ(y, θ))−Pσ2,

where ∂1µ(y, θ) represents the weak Jacobian of µ(y, θ), the sub-
script 1 specifies that the Jacobian is w.r.t. the first argument. The
concepts underlying the WSURE were also generalized to general
non-i.i.d. exponential families in [7].

2.1. Global method for parameter tuning: Gradient descent

When θ 7→ R̂{µ}(y, θ) is sufficiently smooth one can expect to
solve problem (4) by a gradient descent scheme:

θ(n+1) = θ(n) − εθ∂2R̂{µ}(y, θ(n)), (6)

where ∂2R̂{µ}(µ0, θ) is the gradient of R̂{µ}(µ0, θ), the subscript
2 specifies that the gradient is with respect to the second argument
θ, and εθ > 0 is an appropriate step size. We refer to this approach
as the global method. When θ 7→ R̂{µ}(y, θ) is not smooth, which
is often the case when non-smooth regularizers are used in (2), the
authors of [12] propose to replace the gradient in (6) with the weak
gradient of an approximation of the WSURE based on finite dif-
ferences and Monte Carlo simulations (WSURE-FDMC). They also
prove that this weak gradient, referred to as the Stein Unbiased GrA-
dient Risk Estimator (SUGAR-FDMC), is an unbiased estimate of
the weak gradient of the original WMSE. SUGAR-FDMC is defined
as follows:

SUGARFDMC{µ}(y, θ) = 2J x(y, θ)>φ>(y−µ(y, θ))+2σ2J df

with
J df =

1

ε
(J x(y + εδ, θ)−J x(y, θ))>φ>δ (7)

where ε > 0, δ is a realization of ∆ ∼ N (0, IP ), and J x(y, θ) =
∂2x(y, θ). Let N be the number of iterations required for con-
vergence, such that the sequence θ(0), θ(1), . . . , θ(N ) generated
by equation (6) converges to θ? the minimizer of (4). Let L be
the number of iterations required for convergence of the corre-
sponding iterative algorithm, such that the sequence of iterates
x(0)(y, θ),x(1)(y, θ), . . . ,x(L)(y, θ) converges to x(y, θ) the
minimizer of (2). Note that at each iteration of the gradient de-
scent in (6), we need to compute the gradient at θ(n). Assuming
that the computation of the gradient is as expensive as computing
x(y, θ(n)), i.e. it requires L iterations, hence the overall complexity
of the gradient descent scheme for finding the optimal value θ? is in
O(N ×L). Our motivation in the following section is to reduce the
computational complexity required for solving problem (4).

3. ADAPTIVE PARAMETER TUNING (ADA-PT)

We propose to simultaneously estimate x(y, θ?) and θ? with a gen-
eral iterative algorithm (L > 1) designed for solving (2). More pre-
cisely, we propose to update θ throughout the estimation procedure
of x(y, θ). In other words, at each iteration of the iterative algorithm
aimed at solving (2), θ is updated by taking 1 gradient descent step
towards the minimizer of the WSURE at the current iteration. More
formally, we replace the global method in (6) with:{

θ(`+1) = θ(`) − εθ∂2R̂(`){µ(`)}(y, θ(`)),
x(`+1) = ψ(x(`),y, θ(`+1)),

(8)

where ψ(x,y, θ) represents the output of one iteration of the itera-
tive algorithm aimed at solving (2). We refer to the proposed strat-
egy for simultaneously updating both variables as ADAptive Param-
eter Tuning (ADA-PT). Note that in contrast with the global method
where the complexity is O(N × L), the complexity of ADA-PT is
only O(L). This is due to the fact that in contrast with the update
in (6) which requires computing ∂2R̂{µ}(y, θ(n)) i.e. the gradient
after convergence of the iterative algorithm, the ADA-PT update re-
quires the gradient at the current iteration. To make the ideas clear,
algorithm 1 describes how to ADA-PT an iterative algorithm where
R̂{µ}(y, θ) is differentiable. Whereas algorithm 2 describes how
to ADA-PT an iterative algorithm when R̂{µ}(y, θ) is not differen-
tiable, and SUGAR-FDMC is used instead of the gradient.

Algorithm 1: ADA-PT: differentiable case

Inputs observations y ;
Parameters σ2, φ ∈ RP×N , L, εx ;
Initialise θ(0) ← 0, x(0) ← 0, J (0)

R̂
← 0 ;

for ` from 0 to L − 1 do
θ(`+1) = θ(`) − εθJ (`)

R̂

x(`+1) = ψ(x(`),y, θ(`+1))

D(`+1)
x = ∂2ψ(x(`),y, θ(`+1))

J (`+1)
x = ∂3ψ(x(`),y, θ(`+1))

J (`+1)
Dx

= ∂3D(`+1)
x (x(`),y, θ(`+1))

J (`+1)

R̂
= 2(φx(`+1) − y)>φJ (`+1)

x + 2σ2tr(φJ (`+1)
Dx

)

end
return x(y, θ?), ∂2R̂{µ}(y, θ?), θ? ← x(L),J (L)

R̂
, θ(L)

Algorithm 2: ADA-PT: non-differentiable case

Inputs observations y ;
Parameters σ2, φ ∈ RP×N , L, εx ;
Initialise θ(0) ← 0, x(0) ← 0, J (0)

R̂
← 0 ;

for ` from 0 to L − 1 do
θ(`+1) = θ(`) − εθJ (`)

R̂

x(`+1) = ψ(x(`),y, θ(`+1))

J (`+1)
1 = ∂2ψ(x(`),y + εδ, θ(`+1))

J (`+1)
2 = ∂2ψ(x(`),y, θ(`+1))

J (`+1)
df = 1

ε
(J (`+1)

1 −J (`+1)
2 )>φ>δ

J (`+1)

R̂
= 2J (`+1)

1

>
φ>(y − φx(`+1)) + 2σ2J (`+1)

df

end
return x(y, θ?), ∂2R̂{µ}(y, θ?), θ? ← x(L),J (L)

R̂
, θ(L)
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4. CASE STUDY: ADA-PT’ED TIKHONOV

To make the ADA-PT strategy more clear, we consider the instruc-
tive example where h(x) in (2) is the Tikhonov regularization. More
formally, equation (2) becomes:

x(y, θ) = argminx

{
1

2
‖y − φx‖2 +

θ

2
‖x‖2

}
, (9)

and the iterative algorithm reduces then to the following update rule:

x(`+1) = x(`) − εx
{

(φ>φ+ θI)x(`) − φ>y
}
, (10)

where 0 < εx < 2
L

, L being the Lipschitz constant of the cost
function’s gradient. The ADA-PT’ed Tikhonov follows the scheme
described in algorithm 1 where:

D(`+1)
x = D(`)

x − εx((φ>φ+ θ(`+1)I)D(`)
x − φ>)

J (`+1)
x = J (`)

x − εx((φ>φ+ θ(`+1)I)J (`)
x + x(`))

J (`+1)
Dx

= J (`)
Dx
− εx((φ>φ+ θ(`+1)I)J (`)

Dx
+D(`)

x )

J (`+1)

R̂
= 2(φx(`+1) − y)>φJ (`+1)

x + 2σ2tr(φJ (`+1)
Dx

)
(11)

Note that a proof of convergence is out of the scope of this study.
Nevertheless, in what follows we investigate the stationary points of
the proposed iterative algorithm in the case of the Tikhonov regular-
ization. In particular, we show that the estimated θ at the stationary
point of the proposed algorithm is consistent with the desired optimal
value. We assume that algorithm 4 converges, and that each variable
converges to a stationary point. Replacing the iteration numbers (`)
and (`+ 1) in the variables subscripts in equations (10) and (11) by
infinity (∞), we obtain what follows:

x(∞) = (φ>φ+ θ(∞)I)−1φ>y

D(∞)
x = (φ>φ+ θ(∞)I)−1φ>

J (∞)
x = (φ>φ+ θ(∞)I)−1x(∞)

J (∞)
Dx

= (φ>φ+ θ(∞)I)−1D(∞)
x

0 = −(y − φx(∞))>φJ (∞)
x + σ2tr(φJ (∞)

Dx
)

(12)

Note that x(∞) is indeed the desired solution for x(y, θ). It re-
mains to prove that θ(∞) is indeed θ?. Substituting the variables by
their corresponding expressions in the last equation, using the singu-
lar value decomposition (SVD) of φ, and following straightforward
calculations we get:

P∑
i=1

σ4
i

(σ2
i + θ(∞))3

(
x̆2i θ

(∞) − σ2
)

= 0 (13)

where x̆ = V >x0 and where we have considered the following
SVD for φ = UΣV > with Σ a P ×N rectangular diagonal matrix
with σ1, . . . , σP its diagonal entries. Now, for a fixed value of θ,
consider the WMSE of the Tikhonov solution:

WMSE = EW
[
‖φxtik(Y , θ)− φx0‖2

]
, (14)

where xtik(y, θ) = (φ>φ + θI)−1φ>y. Again, using the SVD of
φ, and following straighforward calculations, equation (14) yields:

WMSE =
∑P
i=1

σ2
i

(σ2
i +θ)

2

(
σ2
i σ

2 + x̆2i θ
2
)
. (15)

The optimal θ denoted as θ? is obtained by setting the gradient of
the WMSE to 0 which yields:

P∑
i=1

σ4
i

(σ2
i + θ?)3

(
x̆2i θ

? − σ2) = 0. (16)

Table 1. Optimal regularization parameter, WMSE, IPSNR, and ex-
ecution time obtained with the various methods.

θ? WMSE IPSNR time (sec)
ADA-PT - `2 3.07 4× 10−3 33.16 101
Oracle - `2 3.10 1× 10−3 33.16 32

ADA-PT - `1 0.06 9× 10−4 40.29 392
Oracle - `1 0.07 8× 10−4 41.19 177

LS − 9× 10−3 29.78 31.83

Noting that equations (13) and (16) are consistent, this proves that
the stationary point of the ADA-PT’ed Tikhonov iterative algorithm
is consistent with the optimal estimate in the sense of the WMSE.

5. EXPERIMENTS

We tested the proposed approach with an image deconvolution prob-
lem. We simulated an image of a galaxy with 256 × 256 pixels,
and a realistic radio-telescope PSF similarly to [11]. The initial
clean image of the sky was convolved with the PSF and contami-
nated with white Gaussian noise such as the resulting SNR is equal
to 20 dB. We tested ADA-PT with two different optimization prob-
lems. The first one was problem (9), i.e. with the Tikhonov regu-
larization. The deconvolution problem with the Tikhonov regular-
ization was solved and ADA-PT’ed according to algorithm 1 and
equations (11). The second one was with an `1 analysis wavelet reg-
ularization, i.e. h(x) = ‖Dx‖1, where we considered a union of 8
Daubechies wavelet bases for D widely used in the deconvolution
literature [13–15]. The deconvolution problem with the `1 analysis
regularization was solved based on the primal-dual algorithm pro-
posed in [16, 17] similarly to the work in [11, 18] and ADA-PT’ed
according to algorithm 2.

We tested the two algorithms with different values of θ uni-
formly spaced in the log space. We considered the intervals
[10−1, 10−1.5] and [10−2, 10−0.5] for the `2 and `1 regulariza-
tions respectively. We then found the optimal value of θ using an
oracle approach, i.e. by searching for the one that yielded the small-
est WMSE. The first column in Figure 1 shows the two grid search
results. We tested the proposed ADA-PT strategy departing from
three different initializations for θ. In all cases, θ converged to 3.07
in the case of the `2 regularization and to 0.06 in the case of the `1
regularization. The second column of Figure 1 shows the evolution
of θ throughout the iterations. The third column in Figure 1 shows
the Improvement in the Predicted SNR (IPSNT):

IPSNR = 10log10(
‖x(0) − x0‖2

‖x(L) − x0‖2
).

As a side note, it can be seen that the `1 regularization deconvolution
problem gave better results than the Tikhonov regularization. Figure
2 shows the final estimates of the deconvolved images obtained us-
ing the two ADA-PT’ed deconvolution algorithms. Finally, Table 1
summarizes the quantitative results obtained for the: optimal regu-
larization parameter, WMSE, IPSNR, and execution time with the
two ADA-PT’ed methods, the oracle, and the LS reference problem
i.e. with θ = 0. Note that the ADA-PT’ed version of the prob-
lem with the `2 regularization is approximately three times slower
than its oracle version (ran with a fixed value of θ and without es-
timating the gradient of the WSURE) and the ADA-PT’ed version
of the problem with the `1 regularization is approximately two times
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Fig. 1. Column 1: Variation of the WMSE as a function of θ. Column 2: Variation of θ as a function of the iteration number. Column 3:
Variation of the IPSNR as a function of the iteration number. First & second rows correspond to the case with the `2 and `1 regularizations
respectively.

Fig. 2. First row, from left to right: True image of the sky, and
corrupted image respectively. Second row, from left to right: decon-
volved images of the sky obtained with the `2 and `1 regularizations
respectively

slower than its oracle version. This is mainly due to the calculations
required for estimating the gradient of the WSURE. However, re-
call that using the global method rather than the ADA-PT’ed method
would have taken longer if more than three (resp. two) steps were
required in the gradient descent for the `2 (resp. `1) regularization.

6. CONCLUSION

We presented an adaptive parameter tuning strategy called ADA-PT
that can be used to adapt the regularization parameters in any itera-
tive algorithm designed to solve a regularized least squares problem.
The proposed ADA-PT strategy can be used with a broad class of
problems, involving smooth and non-smooth regularizers. Future
work will be mainly focused on investigating the convergence prop-
erties of the proposed approach.
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