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ABSTRACT

This paper proposes a novel and structured framework for
parameter estimation from incomplete time series data un-
der heavy-tailed random walk model. Traditionally, maxi-
mum likelihood estimation (MLE) for Gaussian random walk
model from incomplete data has been considered. However,
it is not applicable in many practical applications that follow
some heavy-tailed random walk model. We first model a ran-
dom walk model with Student-t residuals. Then we develop
an MLE-based stochastic expectation maximization (EM) al-
gorithm. The algorithm provides tractable E and M steps,
which are easy to implement with simple updates and fast
convergence. The simulation results illustrate the improved
performance over the benchmarks.

Index Terms— random walk, missing data, heavy-tailed,
stochastic EM, Gibbs sampling, Student-t

1. INTRODUCTION
In the recent era of data deluge, many applications collect and
process large amount of time series data for inference, learn-
ing, parameter estimation and decision making. Time series
data play an important role in data analysis and its applica-
tions span almost all disciplines of science, engineering, and
social science. Based on the applications various models are
proposed for analyzing the time series data [1]. Of specific
interest here is the famous random walk model. In practice
many real world applications of time series data follow a ran-
dom walk model. For example, the evolution of stock log-
prices and traded volume in financial applications [2, 3]; gene
association, genetic interactions [4], brain data [5, 6], and bi-
ological networks; movement of animals, micro-organisms,
and cells [7].

In all such applications, issues with missing values fre-
quently occur in the data observation or recording process.
Various reasons that can lead to missing values are: values
may not be measured, values may be measured but get lost,
or values may be measured but are considered unusable as
in the case of outliers[8]. Some real world cases are: some
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stocks may suffer a lack of liquidity resulting in no transac-
tion and hence no price recorded, and observation devices like
sensors breakdown during the measurement, weather or other
conditions disturb sample taking schemes.

The expectation maximization (EM) type algorithms are
state-of-art techniques for parameter estimation from data
with missing values. In this direction, many variants of EM
algorithms have been proposed to handle specific challenges
of missing data. For example, the stochastic EM allows to
tackle the problem posed by intractability of expected com-
plete data log-likelihood. It has also been quite popular to
curb the curse of dimensionality [9, 10], since its computa-
tion complexity is lower than the EM algorithm. On the other
hand, regularized EM algorithms are used to enforce certain
structures in parameter estimates like: sparsity, low-rank, and
network structure [11, 12, 13, 10, 3].

Traditionally, the parameter estimation for time series
models, for example, a random walk model or an autoregres-
sive (AR) model, from data with missing values has been
considered under Gaussian noise. However, many real-world
data sets often follow heavy-tailed distributions. For exam-
ple financial time series [14, 15], brain fMRI [5, 16], animal
movement data [17], and black-swan events in animal pop-
ulation [18]. The estimation based on Gaussian model will
provide unreliable estimates under such situations. There-
fore, it is desirable to consider time series models under
some heavy-tailed distribution, like the Student-t distribu-
tion. Unfortunately, the parameter estimation in such a case
will become much more complicated. The objective of the
current paper is to deal with this challenge and develop an ef-
ficient framework for parameter estimation from incomplete
data under the heavy-tailed time series models.

In this paper, we first introduce the random walk model
under the Student-t distribution, which is a commonly used
heavy-tailed distribution. Then the MLE problem formula-
tion given the incomplete data is presented. Finally, moti-
vated by the usefulness of EM-type algorithm for time-series
data, we propose a stochastic EM framework for the param-
eter estimation from incomplete data. The algorithm enjoys
cheap iterates, fast convergence, and also provides reliable es-
timates. Here for ease of exposition and page limitation, we
only illustrate the univariate random walk model, the idea is
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very general and can be extended to the multivariate case and
generalized innovation models like AR(p) model.

2. HEAVY-TAILED RANDOM WALK WITH
MISSING DATA

Consider a univariate time series Y1, Y2, . . ., YT that follows
a Student-t random walk model:

Yt − Yt−1
i.i.d.∼ t

(
µ, σ2, ν

)
, (1)

where ν > 0. From (1), the pdf of Yt given µ, σ2, ν and
Yt−1 = yt−1 is

p
(
Yt = yt|µ, σ2, ν, Yt−1 = yt−1

)
=ft

(
yt;µ+ yt−1, σ

2, ν
)

=
Γ
(
ν+1
2

)
√
νπσΓ

(
ν
2

) (1 +
(yt − yt−1 − µ)

2

νσ2

)− ν+1
2

,

(2)

where ft (·) denotes the pdf of Student-t distribution.
In practice, certain sample yt may be missing due to var-

ious reasons, then we denote Yt = NA (not available). Sup-
pose we have an observation of this time series with D miss-
ing blocks as follows:

y1, . . . , yt1 ,NA, . . . ,NA, yt1+n1+1, . . . ytd ,NA, . . . ,NA,

ytd+nd+1, . . . , ytD ,NA, . . . ,NA, ytD+nD+1, . . . , yT ,

where, in the d-th missing block, there are nd missing samples
ytd+1,. . .,ytd+nd , which are bounded by two observed data
ytd and ytd+nd+1. We set for convenience t0 = 0 and n0 = 0.
Let us denote the set of the indexes of the observed yt’s by
Cobs, the set of the indexes of the missing yt’s by Cmis.

Ignoring the marginal distribution of y1, the log-likelihood
of the observed data l

(
{yt}t∈Cobs |µ, σ

2, ν
)

is the log of the
product of the pdf of every observed sample conditional on
all the preceding observed data:

lobs
(
{yt}t∈Cobs |µ, σ

2, ν
)

(3)

= log

(
D∏
d=0

td+1∏
t=td+nd+2

ft
(
yt;µ+ yt−1, σ

2, ν
))

+ log

(
D∏
d=1

˙ td+nd+1∏
t=td+1

ft
(
yt;µ+ yt−1, σ

2, ν
)
dytd+1

· · · dytd+nd

)

Then the MLE problem for µ, σ2, and ν can be formulated
as

maximize
µ,σ2,ν>0

lobs
(
{yt}t∈Cobs |µ, σ

2, ν
)

. (4)

The integral in (3) has no closed-form expression; thus, the
objective function is very complicated and we cannot solve

the optimization problem directly. In order to deal with this,
we resort to the EM framework, which circumvents such dif-
ficulty by optimizing a sequence of simpler approximations
of the original objective function instead.

3. STOCHASTIC EM FOR PARAMETER
ESTIMATION

The EM algorithm is a very general iterative algorithm to
solve MLE problems with missing data or latent variables
when the optimization problem cannot be solved directly.
The EM iteration alternates between an expectation (E) step,
which computes the expectation of the complete data log-
likelihood with respect to the posterior distribution of latent
data given the observed data and the current estimates for the
parameters, and a maximization (M) step, which computes
the parameters maximizing the expected complete data log-
likelihood. The key to the success of the EM algorithm is to
consider some appropriate data as latent variables so that the
expected complete data log-likelihood is easy to optimize.

Interestingly, the Student-t distribution can be regarded as
a Gaussian mixture [19]. Since Yt − Yt−1 ∼ t

(
µ, σ2, ν

)
, we

have

Yt − Yt−1|µ, σ2, τt ∼ N
(
µ, σ2/τt

)
, τt ∼ Gamma (ν/2, ν/2) ,

where the pdf of the above Gamma distribution is

fg

(
τt;

ν

2
,
ν

2

)
=

(
ν
2

) ν
2

Γ
(
ν
2

)τ ν2−1t exp
(
−ν

2
τt

)
. (5)

Therefore, we apply the EM algorithm to the above optimiza-
tion problem by regarding {τt} and {yt}t∈Cm as latent vari-
ables. A detailed description of the (E)-step and (M)-step is
given as follows.
E step
In this part, we need to compute expected complete data log-
likelihood. The log-likelihood of the complete data {yt} and
{τt} is

l
(
{yt} , {τt} |µ, σ2, ν

)
(6)

=

T∑
t=2

{
log

(
fN

(
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σ2

τt

)
fg

(
τt;

ν

2
,
ν

2

))}

=

T∑
t=2

{
− τt

2σ2
(yt − yt−1 − µ)

2 − log (σ)

− ν

2
τt +

ν

2
log
(ν

2

)
+
ν + 1

2
log (τt)− log

(
Γ
(ν

2

))}
where fN (·) is the pdf for the Gaussian distribution.

If there are no missing values in the time series {yt}, then
only {τt} are latent variables in (6). The posterior distribu-
tion of {τt} is simple. The corresponding expected complete
log-likelihood has a closed-from expression and is easy to op-
timize.
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However, when missing values occur in the time series,
both {yt}t∈Cm and {τt} are latent variable. There are more
variables in the complete data log-likelihood. And there is
even no closed-form expression for the pdf of the posterior
distribution of {τt} and {yt}t∈Cmis . Therefore, it is very
difficult to compute the expectation of complete data log-
likelihood. To solve the unavailability of an exact expression
for the expected complete data log-likelihood, some stochas-
tic EM methods have been proposed to approximate the
expected complete data log-likelihood [20, 21, 10]. Firstly,
they draw realizations of latent variables from the posterior
distribution. Then they approximate the expected complete
data log-likelihood of the complete data log-likelihood of
these realizations. Finally, they update the parameters as a
combination of the current estimates and the maximizer of
the approximated expected complete data log-likelihood.

Nevertheless, since the closed-form expression for the pdf
of the posterior distribution of {τt} and {yt}t∈Cmis is un-
available, it is hard to directly draw random samples from
the posterior distribution. Therefore, we resort to Gibbs sam-
pling, which, instead of drawing the all components of the
latent variables jointly, draws realizations of each component
sequentially based on its distribution conditional on all the
other components. Lemmas 1 and 2 give the conditional dis-
tribution of each latent variable in our model.

Lemma 1. Given the current estimates, the mixture weights
{τt} and all the samples except yt, the conditional distribu-
tion of Yt for t ∈ Cmis is

Yt|µ(k),
(
σ(k)

)2
, ν(k),Y−t, {τt} (7)

∼N

(
τt
(
µ(k) + yt−1

)
+ τt+1

(
yt+1 − µ(k)

)
τt + τt+1

,

(
σ(k)

)2
τt + τt+1

)
where Y−t is the set of all the samples except yt.

Lemma 2. Given the current estimates, all the samples, and
all the mixture weights except τt, the conditional distribution
of τt is

τt|µ(k),
(
σ(k)

)2
, ν(k), {yt} , T−t (8)

∼ Gamma

(
ν(k) + 1

2
,

(
σ(k)

)−2 (
yt − µ(k) − yt−1

)2
+ ν(k)

2

)
where T−t is the set of all the mixture weights except τt.

The conditional distributions are tractable; thus, with the
help of Gibbs sampling, we can draw realizations of latent
variables from its posterior distribution easily. As it is sug-
gested in [21], when the maximization step is straightforward
to implement from the computational point of view, one may
use only one realization in each iteration. Here, at the iteration

k, we only use one realization of
{
y
(k)
t

}
t∈Cmis

and
{
τ
(k)
t

}
to

approximate the expected complete data log-likelihood as in
[10]. The resulting log-likelihood of the simulated complete
data is

l
({
y
(k)
t

}
,
{
τ
(k)
t

}
|µ, σ2, ν

)
(9)

=

T∑
t=2

{
−τ

(k)
t

2σ2

(
y
(k)
t − µ− y

(k)
t−1

)2
− log (σ)

− ν

2
τ
(k)
t +

ν

2
log
(ν

2

)
+
ν − 1

2
log
(
τ
(k)
t

)
− log

(
Γ
(ν

2

))}

where y(k)t∈Cobs = yt.

M step
First, we need to find the maximizer of the approximation of
the expected complete data log-likelihood. The optimization
of µ and σ2 are decoupled with the optimization of ν in (9).
Setting gradients with respect to µ and 1/σ2 equal to 0 gives

T∑
t=2

τ
(k)
t

(
y
(k)
t − µ− y

(k)
t−1

)
σ2

= 0, (10)

T∑
t=2

τ
(k)
t

(
y
(k)
t − µ− y

(k)
t−1

)2
− σ2

2
= 0. (11)

From them, we can get a closed-form maximizer of (9) as
follows

µ
(k+1)
1 =

∑T
t=2 τ

(k)
t

(
y
(k)
t − y

(k)
t−1

)
∑T
t=2 τ

(k)
t

, (12)

(
σ
(k+1)
1

)2
=

∑T
t=2 τ

(k)
t

(
y
(k)
t − µ(k+1) − y(k)t−1

)2
T − 1

. (13)

The optimal ν(k+1)
1 can be found by a one-dimensional

search. Next, we update the estimates of the parameters by a
linear combination of the current estimate and the maximizer:

θ(k+1) = θ(k) + γ(k)
(
θ
(k+1)
1 − θ(k)

)
, (14)

where γ(k) = 1
k , θ(k) =

{
µ(k),

(
σ(k)

)2
, ν(k)

}
, and θ

(k+1)
1 ={

µ
(k+1)
1 ,

(
σ
(k+1)
1

)2
, ν

(k+1)
1

}
. The resulting stochastic al-

gorithm is summarized in Algorithm 1.
Note that the log-likelihood of the incomplete data usually

has more than one stationary points. Therefore, the algorithm
may converge to a local maximum depending on the initial
point. The estimation result and the convergence speed can
be improved by choosing a proper initialization, and it can be
obtained by having domain specific knowledge. This is also
observed inour analysis, as detailed in next section.
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Algorithm 1 Stochastic algorithm

1. Initialize µ(0) and σ(0) as an arbitrary number, ν(0) as an
arbitrary positive number, and k = 0.
2. Draw one realization

{
y
(k)
t

}
t∈Cmis

and
{
τ
(k)
t

}
via Gibbs

sampling method:

• Generate some initial values for {yt}t∈Cmis randomly.

• Sample
{
τ
(k)
t

}
and

{
y
(k)
t

}
t∈Cm

according to Lemma

2 and Lemma 1.

3. Calculate the maximizer of the log-likelihood of the simu-
lated complete dataset

{
y
(k)
t

}
and

{
τ
(k)
t

}
and update param-

eter estimates according to (12) (13) and (14).
4. Return to step 2 or stop if convergence is determined.

4. SIMULATIONS
In this section, we present some numerical results of applying
the proposed algorithm to estimate the parameters of Student-
t random walk model from incomplete data. We also com-
pare our approach with the traditional estimation approaches,
MLE of Gaussian random walk model from incomplete data
and MLE of Student-t random walk model by ignoring the
missing values (only use the available differences between
two adjacent samples). Note the Gaussian distribution is a
special case of the Student-t distribution with ν = +∞.
The estimation performance is quantified by the normal-
ized square errors (NSEs) defined as NSEµ = |µ̂−µtrue|

|µtrue| ,

NSEσ2 =
|σ̂2−σ2

true|
|σ2
true|

, and NSEν = |ν̂−νtrue|
|νtrue| . The stop-

ping criteria for Algorithm 1 is |µ(k+1)−µ(k)|
|µ(k)| < 10−5,

|(σ(k+1))
2−(σ(k))

2|

(σ(k))
2 < 10−5, and |ν

(k+1)−ν(k)|
|ν(k)| < 10−5.

First, we randomly generate a time series with T = 200
from a random walk model with µtrue = 1, σ2

true = 0.5,
νtrue = 3. Then we randomly delete 40 samples and get an
incomplete data set. Finally, we apply above three different
approaches to estimate µ, σ2 and ν from this incomplete data
set.

One interesting thing to note here is that, when we ini-
tialize our algorithm with the estimates from Gaussian ran-
dom walk, the algorithm converges much faster and the final
estimates are significantly improved, in comparison to ran-
dom initialization. Figure 1 compares the estimation errors of
parameters versus iterations using a random initial point and
the Gaussian estimates as initial µ(0) and σ(0), and a random
ν(0). We can see the algorithm converges in 100 iterations,
where each iteration just needs one run of Gibbs sampling,
and also the final estimation error is much smaller. This also
testifies our argument that for heavy-tailed data the traditional
methods for Gaussian distribution are too inefficient, and sig-
nificant performance gain can be achieved by designing the

algorithm under heavy-tailed model.
For a generalized performance analysis, we test our al-

gorithms with different initializations, and compare the final
estimation result with the estimation results of two existing
methods. Figure 2 shows the final estimation results of three
different approaches. Here we have tried 20 different random
ν0 ’s for Algorithm 1. In all cases, our estimates are most reli-
able since we not only consider heavy tail, but also make full
use of the data.
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5. CONCLUSION

In this paper, we have considered heavy-tailed random walk
time series with missing values and developed an efficient al-
gorithm to solve the parameter estimation problem. Numeri-
cal simulations show that the proposed algorithm can achieve
a good estimation result with low computation cost.
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