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Abstract—We are concerned with a privacy-preserving prob-
lem in Kalman filter: a sensor releases a set of measurements to
fusion center, who has perfect knowledge of the dynamical model,
to allow it to estimate the public state, while prevent it from
estimating the private state. We propose to linearly transform
the original observation into a lower dimensional space before
sending them to fusion center. Two privacy-utility tradeoffs are
formulated: one concerns only at the current time step and the
other concerns over two time steps. The transformation that leads
to the optimal tradeoff can be found in closed-form. The privacy
(estimation of private state) and utility (estimation of public state)
are measured based on recursive Bayesian Cramér-Rao bound.

Index Terms—Kalman filter, inference privacy, compression,
linear transformation, parameter estimation, recursive Bayesian
Cramér-Rao bound.

I. INTRODUCTION

With the emergence of the data driven information technol-
ogy, there are increasing concerns over the breach of privacy of
personal data collected from sensors. In general, privacy can
be categorized into two classes: data privacy and inference
privacy. Data privacy protects the original measurements from
being inferred by fusion center. The privacy metrics that
have been proposed in data privacy include homomorphic
encryption [1], [2], [3] and local differential privacy [4], [5],
[6], [7]. Inference privacy prevents fusion center from making
certain statistical inferences. The privacy metrics have been
used in inference privacy include information privacy [8], [9],
[10], [11], differential privacy [12] and average information
leakage [13], [14]. The interrelation between data privacy and
inference privacy has been studied in [15], [16]. The privacy
we consider in this paper belongs to inference privacy.

The Kalman filter uses a system’s dynamics model and
multiple sequential measurements to form an estimate of the
system’s varying state. The privacy comes from the system’s
state that can be separated into private state and public state.
Our goal is then to find optimal tradeoff between maximizing
the estimation error for private state and minimizing that
for public state. This can be achieved by transforming the
original measurement space into a lower dimensional space.
The transformation applied in this paper is restricted to linear
form. In practice, a privacy-preserving Kalman filter can oper-
ate as: a sensor transform the measurements before releasing
them to the fusion center who knows system’s dynamical
model. By doing so, the estimation the private state suffers
a large uncertainty but the estimation of public state has small
uncertainty.

Our work is related to the following works which preserve
privacy through data compression/linear transformation: 1) in-

formation bottleneck (IB) [17], [18], [19], [20] which operates
to compress source variable, while preserving information
about relevant variable. The compression (privacy) and pre-
served relevant information (utility) are measured by mutual
information; 2) privacy funnel (PF) [21] which operates to
suppress information about relevant variable, while minimally
compress the source variable. 3) compressive privacy (CP)
[22], [23] unifies PF and IB. The privacy and utility in CP are
measured by differential mutual information; 4) [24] proposes
to compress the observations while maximally retains the
estimation accuracy of all signal parameters. The estimation
accuracy is measured by Bayesian Cramér-Rao lower bound.

One major difference between our work and the existing
ones is that our work is based on a dynamic system, whereas
all above mentioned works are based on a static one. The
dynamical model encourages us to measure the privacy (esti-
mation error/uncertainty of private state) and utility (estima-
tion error/uncertainty of public state) by recursive Bayesian
Cramér-Rao bound [25], which is also different from the
measure existing works have used. Moreover, our work can
be considered as a generalization of [24] in the sense that we
can designate which parameters to protect.

II. PROBLEM FORMULATION

A. Review of Kalman filter

The dynamical and observational models are both assumed
in Kalman filter to be linear, and expressible as

xk = Fkxk−1 + vk−1, (1)
zk = Hkxk + nk, (2)

where xk ∈ RL and zk ∈ RN are the system’s state and
observation (measurement), and Fk ∈ RL×L and Hk ∈
RN×M (N ≥ L) are known matrices defining the linear
functions. The state and process noise vk−1 and nk, which
are statistically independent, follow zero-mean Gaussian dis-
tribution with covariances being Qk−1 and Rk, respectively.

Kalman filter algorithm contains two distinct phases: “pre-
dict” and “update”. In the “predict” phase, the state estimate
and error covariance are predicted, respectively, by

x̂k|k−1 = Fkx̂k−1|k−1, (3)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk, (4)

with T denoting transpose operator. In the “update” phase, the
state estimate and error covariance are updated, respectively,
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through

x̂k|k = x̂k−1|k−1 + Kk(zk −Hkx̂k|k−1), (5)
Pk|k = (I−KkHk)Pk|k−1, (6)

where Kk = Pk|k−1H
T
k S−1k denotes the Kalman gain with

Sk = HkPk|k−1H
T
k + Rk being the covariance of the

innovation term zk −Hkx̂k|k−1.

B. Privacy for Kalman filter

The true state xk may be partitioned into two parts as

xk =

[
x
(p)
k

T
,x

(q)
k

T
]T

, where x
(p)
k ∈ RLp contains public

state that are shareable with other people whereas x
(q)
k ∈ RLq

represents private state containing sensitive information that
are accessible only by the authorized parties. The problem that
we are going to address is to linearly transform (or compress)
zk in (2) such that the estimation error of private state x̂

(q)
k|k is

maximized, while the estimation error of public state x̂
(p)
k|k is

retained reasonably low. Here, x̂
(p)
k|k and x̂

(q)
k|k are, respectively,

the public and private partitions of x̂k|k in (5).
To achieve this, a linear mapping from the N -dimensional

to the M -dimensional space, f : RN → RM , N > M , is
applied:

z̃k = CT
k zk = CT

k Hk︸ ︷︷ ︸
:=H̃k

xk + CT
k nk︸ ︷︷ ︸

:=ñk

, (7)

where z̃k ∈ RM , Ck ∈ RN×M , H̃k ∈ RM×L, ñk ∈ RM ,
and covariance of the compressed ñk is R̃k := CT

k RkCk.
After transforming the measurement, the state estimate and
error covariance in (5) and (6) become

x̂k|k = x̂k−1|k−1 + K̃k(z̃k − H̃kx̂k|k−1), (8)

P̃k|k = (I− K̃kH̃k)P̃k|k−1, (9)

where K̃k = P̃k|k−1H̃
T
k S̃−1k with S̃k = H̃kP̃k|k−1H̃

T
k + R̃k

and P̃k|k−1 = FkP̃k−1|k−1F
T
k + Qk.

The optimal transformation Ck can be found by solving
following two privacy-utility tradeoff problems.

C. Privacy-utility tradeoff at current time step

At current time k, the privacy-utility tradeoff can be cast as
the following optimization problem

min
Ck

Tr

([
P̃k|k

]
p,p

)
− βTr

([
P̃k|k

]
q,q

)
(P1)

where

P̃k|k =


[
P̃k|k

]
p,p

[
P̃k|k

]
p,q[

P̃k|k

]T
p,q

[
P̃k|k

]
q,q

 ,
and

[
P̃k|k

]
p,p
∈ RLp×Lp ,

[
P̃k|k

]
q,q
∈ RLq×Lq ,

[
P̃k|k

]
p,q
∈

RLp×Lq , and Tr(·) denotes the trace operator, and P̃k|k
defined in (9) is a function of Ck, and the Lagrange parameter
β determines the tradeoff between the estimation error of
public state and that of private state at current time step.

D. Privacy-utility tradeoff over two time steps

The linear transformation of the system’s measurement at
time k influences not just the privacy-utility tradeoff at current
time step but also that at next time instant. This is because the
predicted error covariance P̃k+1|k relates to the error covari-
ance P̃k|k through (4) i.e. P̃k+1|k = Fk+1P̃k|kFT

k+1 +Qk+1.
Therefore, we consider here a privacy-utility tradeoff over two
time steps as below

min
Ck

gk|k + εgk+1|k(P2)

s.t. gk|k = Tr

([
P̃k|k

]
p,p

)
− βTr

([
P̃k|k

]
q,q

)
gk+1|k = Tr

([
P̃k+1|k

]
p,p

)
− γTr

([
P̃k+1|k

]
q,q

)
,

where gk|k reflects the privacy-utility tradeoff at current time
step as described in (P1), while gk+1|k represents the predicted
privacy-utility tradeoff which is controlled by the Lagrange
parameter γ. The Lagrange parameter ε determines the tradeoff
between gk|k and gk+1|k. When ε = 0, (P2) degenerates to
(P1). In gk+1|k, the block matrices constituting P̃k+1|k are
constructed in the same ways as those in P̃k|k

III. PROPOSED ALGORITHM

We will solve (P2) by starting solving its special case in
(P1).

A. Solution to problem (P1)

We firstly expand P̃k|k as

P̃k|k

=P̃k|k−1 − P̃k|k−1H̃
T
k S̃−1k H̃kP̃k|k−1,

=P̃k|k−1 − P̃k|k−1H
T
k Ck

(
CT

k TkCk

)−1
CT

k HkP̃k|k−1,

where S̃k = CT
k TkCk and Tk := HkP̃k|k−1H

T
k + Rk .

Replacing Ck by T
−1/2
k C′k leads to

P̃k|k = P̃k|k−1 − P̃k|k−1H̄
T
k C′k

(
C′

T
k C′k

)−1
C′

T
k H̄kP̃k|k−1,

where H̄k := T−T/2Hk. Let “economy size” singular value
decomposition of C′k be UkΛkVT

k , where Uk ∈ RN×M ,
Λk ∈ RM×M and Vk ∈ RM×M . Then, by the fact that

C′k

(
C′

T
k C′k

)−1
C′

T
k = UkUT

k , we have

P̃k|k = P̃k|k−1 − P̃k|k−1H̄
T
k UkUT

k H̄kP̃k|k−1

= P̃k|k−1 −GT
k UkUT

k Gk, (10)

where Gk := H̄kP̃k|k−1. Now problem in (P1) can be
rewritten as

min
Uk

Tr

([
P̃k|k−1

]
p,p
− [Gk]

T
p UkUT

k [Gk]p

)
− βTr

([
P̃k|k−1

]
q,q
− [Gk]

T
q UkUT

k [Gk]q

)
(11)

s.t. UT
k Uk = IM ,

4435



where the partition of P̃k|k−1 is the same as that of P̃k|k in
(P1), Gk =

[
[Gk]p , [Gk]q

]
with [Gk]p and [Gk]q containing,

respectively, the first Lp columns and the remaining Lq

columns of Gk, and IM is an identity matrix of size M ×M .
Now instead of finding original transformation Ck, we may
alternatively optimize (P1) over Uk which relates to Ck via
Ck = T

−1/2
k Uk.

Ignore P̃k|k−1 which doesn’t depend on Uk, the problem
in (11) is equivalent to

max
Uk

Tr
(

[Gk]
T
p UkUT

k [Gk]p

)
− βTr

(
[Gk]

T
q UkUT

k [Gk]q

)
(12)

s.t. UT
k Uk = IM .

The Lagrange function L(Uk,λ) of (12) is

M∑
m=1

[Uk]
T
m

(
[Gk]p [Gk]

T
p − β [Gk]q [Gk]

T
q

)
[Uk]m

− λm
(

[Uk]
T
m [Uk]m − 1

)
,

where [Uk]m is the mth column of Uk and λ =
[λ1, . . . , λM ]T are the Lagrange multipliers. Differentiating of
L(Uk,λ) with respect to [Uk]m ,m = 1, . . . ,M and equating
to zero leads to(

[Gk]p [Gk]
T
p − β [Gk]q [Gk]

T
q

)
[Uk]m = λm [Uk]m ,

which implies the objective of (12) is maximized when
Uk consists of M eigenvectors of Wk := [Gk]p [Gk]

T
p −

β [Gk]q [Gk]
T
q associated with its M largest eigenvalues.

B. Solution to problem (P2)

We firstly express the predicted privacy-utility tradeoff
gk+1|k in terms of Uk. Based on (4) and (10), P̃k+1|k equals
to

P̃k+1|k

=Fk+1P̃k|k−1F
T
k+1 − Fk+1G

T
k UkUT

k GkFT
k+1 + Qk+1

=Fk+1P̃k|k−1F
T
k+1 −GT

k+1|kUkUT
k Gk+1|k + Qk+1,

where Gk+1|k := GkFT
k+1. Then, gk+1|k can be written as

gk+1|k = Tr

([
Fk+1P̃k|k−1F

T
k+1 + Qk+1

]
p,p

−
[
Gk+1|k

]T
p

UkUT
k

[
Gk+1|k

]
p

)
− γTr

([
Fk+1P̃k|k−1F

T
k+1 + Qk+1

]
q,q

−
[
Gk+1|k

]T
q

UkUT
k

[
Gk+1|k

]
q

)
, (13)

where Gk+1|k =
[[

Gk+1|k
]
p
,
[
Gk+1|k

]
q

]
is partitioned in

the same manner as Gk. Ignoring the terms in gk|k and gk+1|k

that are independent of Uk, after some simple manipulations,
the problem in (P2) can be reformulated as

max
Uk

Tr
[
UT

k Wk,k+1Uk

]
(14)

s.t. Wk,k+1 = Wk + εWk+1|k,

Wk+1|k =
([

Gk+1|k
]
p

[
Gk+1|k

]T
p

−γ
[
Gk+1|k

]
q

[
Gk+1|k

]T
q

)
,

Wk = [Gk]p [Gk]
T
p − β [Gk]q [Gk]

T
q

UT
k Uk = IM .

Following the same manner as how we solve problem (12), the
solution to (14) will be Uk that consists of M eigenvectors
of Wk,k+1 associated with its M largest eigenvalues. The
original transformation Ck will be T

−1/2
k Uk.

IV. DISCUSSION AND SIMULATIONS

In this section, we discuss how different parameters influ-
ence the performance of privacy-utility tradeoff at current time
step and tradeoff over two time steps, and provide insights by
simulations. To facilitate our analysis, we consider Fk and Hk

to be time-invariant and their entries are drawn independently
from uniform distribution in the interval (0, 1). Moreover, the
covariances of the state and process noise Qk and Rk are
chosen to be IL and IN , respectively. Let the error covariance
of the initial state P0|0 be 10IL. For the following simulations,
we also fix N = 20 and L = 8 in which Lp = 3 and Lq = 5,
and γ = β = 0.001.

Figures 1 shows the impact of the dimension M on the
privacy-utility tradeoff at current time step. The variance for

public state is defined as Tr

([
P̃k|k

]
p,p

)
and that for private

state is Tr

([
P̃k|k

]
q,q

)
. Here, k goes from 0 to 10, and the

results shown in Figures 1 are obtained after 10 time steps.
Two values of M i.e. M = Lp and M = N − Lq are critical
because it can be proved by Weyl’s inequality (due to lack of
space we will skip the proof) that Wk defined in the solution
to (P1) has Lp number of positive eigenvalues, Lq number of
negative eigenvalues and N − L number of zero eigenvalues.
Therefore, the subspace spanned by Lp eigenvectors associated
with the Lp largest eigenvalues captures all public information,
while the subspace spanned by Lq eigenvectors associated with
the Lq smallest eigenvalues retains all private information.
Figures 1 shows that both public and private variances will not
change in the interval of Lp ≤M ≤ N −Lq . However, if M
is smaller than Lp, not all public information will be captured
thus rendering higher public variance. If M is greater than
N−Lq , some private information will be included thus private
variance is decreasing from M = N−Lq +1 onwards. Above
observations suggest that M should be chosen between Lp and
N−Lq for solving (P1). Note that if M = N , then Ck (or Uk)
becomes a square matrix (no data compression anymore) and
it degenerates to the original Kalman filter which preserves no
privacy.
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Fig. 1. By solving (P1), public and private variances at current time step
vs. transformation dimension M , with N = 20, Lp = 3 and Lq = 5. The
results are obtained after 10 time steps.

In Figure 2, we study how different M affect problem
(P2). The variances at the current time step are defined as
same as those in Figure 1. The public and private vari-
ances predicted for next time step are defined, respectively,

as Tr

([
P̃k+1|k

]
p,p

)
and Tr

([
P̃k+1|k

]
q,q

)
. To understand

how M affect the privacy-utility tradeoff over two time
steps, we need to look into the distribution of eigenvalues
of Wk,k+1 which is a sum of Wk and εWk+1|k, where
ε is set to 100. It can be proved by Wely’s inequality that
Wk,k+1 has min(2Lp, L) number of positive eigenvalues and
L − min(2Lp, L) number of negative eigenvalues and the
remaining N−L number of eigenvalues are zeros. Recall that
Lp = 3 and Lq = 5 in our setting. Figure 2 shows that the
variances for both public and private states keep unchanged
for M between 2Lp = 6 and N − Lq + Lp = 18, and all
public information will be captured if M is greater than 2Lp,
and some private information will be captured if M is greater
than N − Lq + Lp = 18. Therefore, we should choose M
between 2Lp and N − Lq + Lp for solving (P2).

In Figure 3, we study the tradeoff between gk|k (privacy-
utility tradeoff at current time step) and gk+1|k (privacy-utility
tradeoff predicted for next time step) in (P2) by varying the
Lagrange parameter ε from 0 to 10000. Now M is fixed at
N − Lq + Lp = 18, and the results shown in Figure 3 are
obtained after 10 time steps. When ε is small, the tradeoff
between gk|k and gk+1|k is not obvious since the impact of
gk+1|k is negligible. From ε = 100 onwards, the difference
between public and private variances at the current time step
starts shrinking indicating worse privacy-utility tradeoff at
current time step, whereas the privacy-utility predicted for next
time step is improving because the predicted public variance
remains almost unchanged while the predicted private variance
is increasing.

V. CONCLUSION

In this paper, we have formulated two privacy-preserving
problems in a dynamical system. Problem (P1) balances the
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Fig. 2. By solving (P2), public and private variances at current time step and
predicted for next time step vs. transformation dimension M . The Lagrange
ε in (P2) is set to 100, and N = 20, Lp = 3 and Lq = 5. The results are
obtained after 10 time steps.
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Fig. 3. By solving (P2), public and private variances at current time step and
predicted for next time step vs. Lagrange parameter ε. Here, M is chosen to
be N − Lq + Lp = 18. The results are obtained after 10 time steps.

estimation of public state and that of private state at cur-
rent time step, and problem (P2) balances them over two
time steps. Both problems are formulated based on recursive
Bayesian Cramér-Rao bound and optimized over a linear
transformation matrix. These two optimization problems can
be reformulated as eigenvalue decomposition problems, thus
resulting in closed-form solutions. Simulations suggest that
M should be chosen in [Lp, N − Lq] for solving (P1) and
[min(2Lp, L), N − L + min(2Lp, L)] for solving (P2). The
impact of ε on current and predicted privacy-utility tradeoffs
are numerically studied.
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