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ABSTRACT

We address the problem of estimating the parameter of a Bernoulli
process. This arises in many applications, including photon-efficient
active imaging where each illumination period is regarded as a sin-
gle Bernoulli trial. We introduce a framework within which to min-
imize the mean-squared error (MSE) subject to an upper bound on
the mean number of trials. This optimization has several simple and
intuitive properties when the Bernoulli parameter has a beta prior. In
addition, by exploiting typical spatial correlation using total varia-
tion regularization, we extend the developed framework to a rectan-
gular array of Bernoulli processes representing the pixels in a natural
scene. In simulations inspired by realistic active imaging scenarios,
we demonstrate a 4.26 dB reduction in MSE due to the adaptive
acquisition, as an average over many independent experiments and
invariant to a factor of 3.4 variation in trial budget.

Index Terms— adaptive sensing, Bernoulli processes, beta dis-
tribution, computational imaging, conjugate prior, low-light imag-
ing, photon counting, total variation regularization

1. INTRODUCTION

Estimating the parameter of a Bernoulli process is a fundamental
problem in statistics and signal processing, and it underlies the rela-
tive frequency interpretation of probability [1]. From the outcomes
of independent and identically distributed (i.i.d.) binary-valued tri-
als (generically, failure (0) or success (1)), we wish to estimate the
probability p of success. Among myriad applications, our interest
is raster-scanned active imaging in which a scene patch is periodi-
cally illuminated with a pulse, and each period either has a photon-
detection event (success) or not (failure) [2]. The probability p has
a monotonic relationship with the reflectivity of that patch, and an
estimate of p becomes the corresponding image pixel. For efficiency
in acquisition time or illumination energy, we are motivated to form
the image accurately from a small number of illumination pulses,
under conditions where p is small.1

Conventional systems are not adaptive. With a fixed number of
trials n, the number of successes K is a binomial random variable,
and the maximum likelihood (ML) estimate of p is K/n, which has
mean-squared error (MSE) of p(1− p)/n.2 As we will show, allow-
ing the number of trials to vary while maintaining an upper bound of
n on the average number of trials can result in improved performance
under various metrics. We limit our attention here to the MSE of p.

This material is based upon work supported in part by the US National
Science Foundation under Grant No. 1422034.

1In applications using time-correlated single photon counters, it is recom-
mended to keep p below 0.05 to avoid time skew and missed detections due
to detector dead time [3].

2Motivations for forming some other estimate of p include a prior distri-
bution for p or a minimax criterion.

First we establish a framework for optimal adaptation of the number
of trials for a single Bernoulli process. Then we consider a rectangu-
lar array of Bernoulli processes representing a scene in an imaging
problem, and we evaluate the inclusion of total variation regulariza-
tion for exploiting correlations among neighbors. In a simulation
with parameters realistic for active optical imaging, we demonstrate
a reduction in MSE by a factor of 2.67 (4.26 dB) in comparison to
the same regularized reconstruction approach applied without adap-
tation in numbers of trials.

1.1. Related Work

In statistics, forming a parameter estimate from a number of i.i.d. ob-
servations that is dependent on the observations themselves is called
sequential estimation [4]. Early interest in the sequential estima-
tion problem for a Bernoulli process parameter was inspired by the
high relative error of deterministically stopping after n trials when
p is small. Specifically, the standard error of the ML estimate is√

p(1− p)/n, which for small p is unfavorable compared to any-
thing proportional to p. This shortcoming manifests, for example,
in the difficulty of distinguishing between two small possible values
for p when n is not large.

Haldane [5] observed that if one stops after ℓ successes, the (ran-
dom) number of trials is informative about p, and a simple unbiased
estimate with standard error proportional to p can be found provided
that ℓ ≥ 3. Tweedie [6] suggested to call this inverse binomial sam-
pling, but the resulting random variable is now commonly known
as negative binomial or Pascal distributed. More recent works have
focused on non-MSE performance metrics [7,8], estimation of func-
tions of p [9], estimation from imperfect observations [10], and com-
posite hypothesis testing [11].

First-photon imaging [12] introduced the use of a nondetermin-
istic dwell time to active imaging. This method uses the number
of illumination pulses until the first photon is detected to reveal in-
formation about reflectivity, setting ℓ = 1 in the concept of Hal-
dane. Spatial correlations are used to regularize the estimation of
the full scene reflectivity image, resulting in good performance from
only 1 detected photon per pixel, even when half of the detected
photons are attributable to uninformative ambient light. Comparing
first-photon imaging to photon-efficient methods with deterministic
dwell time [2, 13–21] was an initial inspiration for this work. To the
best of our knowledge, no previous paper has explained an advantage
or disadvantage from variable dwell time.

1.2. Main Contributions and Outline

This work introduces a novel framework for depicting and under-
standing stopping rules for estimating a Bernoulli process parameter
(Section 2). This framework is not limited to a single error criterion
or to Bayesian formulations, but here we limit our attention to MSE
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of p when a prior distribution for p is known. We develop an optimal
data-dependent stopping rule in detail for the case of a Beta prior
on p in Section 2.2, extending it to arrays of Bernoulli parameters
in Section 3. Numerical results inspired by active imaging applica-
tions are presented in Section 4 to validate the proposed schemes.
We conclude the paper in Section 5.

2. A SINGLE BERNOULLI PROCESS

Let {Xt : t = 1, 2, . . .} be a Bernoulli process with (unknown
random) parameter p, and let n ∈ R+ be a trial budget. A (random-
ized) stopping rule consists of a sequence of continuation probability
functions

qt : {0, 1}t → [0, 1], t = 0, 1 . . . , (1)

that give the probability of continuing observations after trial t –
based on a biased coin flip independent of the Bernoulli process –
as a function of (X1, X2, . . . , Xt). The result is a random number
of observed trials T .3 The stopping rule is said to satisfy the trial
budget when E[T ] ≤ n.

Our goal is to minimize the MSE in estimation of p through the
design of a stopping rule that satisfies the trial budget and an estima-
tor p̂ (X1, X2, . . . , XT ). We will first show that the continuation
probability functions can be simplified greatly with no loss of opti-
mality. Then, we will provide results on optimizing the stopping rule
under a Beta prior on p.

2.1. Framework for Data-Dependent Stopping

Based on (1), a natural representation of a stopping rule is a binary
tree representing all sample paths of the Bernoulli process, with a
probability of continuation label at each node. This representation
has 2t+1 − 1 labels for observation sequences up to length t. How-
ever, the tree can be simplified to a trellis without loss of optimality.
Conditioned on observing k successes in m trials, all

(
m
k

)
sequences

of length m with k successes are equally likely. Thus, regardless
of the prior on p, no improvement can come from having unequal
continuation probabilities for tree nodes all representing k successes
in m trials. Instead, these nodes should be combined, reducing the
tree to a trellis. This representation has 1

2
(t + 1)(t + 2) labels for

observation sequences up to length t. The continuation probabil-
ity functions are reduced to a set of probabilities {qk,m : m =
0, 1 . . . ; k = 0, 1, . . . , m} for continuing after k successes in
m trials, as depicted in Fig. 1.

The conventional use of a fixed number of trials n corresponds
to continuation probabilities

qk,m =

{
1, m < n;

0, otherwise.

Regardless of the sample path, one observes exactly n trials, and the
number of successes K is a Binomial(n, p) random variable.

The technique analyzed by Haldane [5] and employed in first-
photon imaging [12] with ℓ = 1 can be expressed with continuation
probabilities

qk,m =

{
1, k < ℓ;

0, otherwise.

3The time T does not satisfy the standard definition of a stopping time
because randomness independent of {Xt} is allowed to influence the deci-
sion of whether to continue the observations. This is to allow the trial budget
to be expended exactly.

q0,0

q0,1 q1,1

q0,2 q1,2 q2,2

q0,3 q1,3 q2,3 q3,3

q0,4 q1,4 q2,4 q3,4 q4,4

q0,5 q1,5 q2,5 q3,5 q4,5 q5,5

Fig. 1. A trellis showing continuation probabilities for observation
sequences up to length 5; qk,m denotes the probability of continuing
after observing k successes in m trials.

Observations cease with ℓ successes in M trials, where M is a
NegativeBinomial(ℓ, p) random variable.

In general, observations cease with K successes in M trials,
where K and M are both random variables. Importantly, the i.i.d.
nature of a Bernoulli process makes the pair (K,M) contain all the
information that is relevant from the sequence of observations. Sim-
ilarly to the reduction from tree to trellis, conditioned on (K,M) =
(k,m), all sequences of length m with k successes are equally likely,
so the specific sequence among these is uninformative about p.

Our method for optimizing the design of continuation probabil-
ities is through analyzing mean Bayes risk reduction from continua-
tion. We define risk function L as squared error or squared loss

L(p, p̂) = (p− p̂)2,

where p is the Bernoulli parameter and p̂ is the estimate of this pa-
rameter. The Bayes risk R is defined as

R(p, p̂) = E[L(p, p̂)] = E
[
(p− p̂)2

]
,

which in this case is the MSE. Using the minimum MSE (MMSE)
estimator, for which p̂ = E[P ], the Bayes risk is the variance of the
posterior distribution. Thus, key to the optimization is to track pos-
terior variances through the trellis. While this could be done for any
prior on p, here we consider only the convenient case of choosing a
conjugate prior.

2.2. Analysis Under Beta Prior

The Beta distribution is the conjugate prior for Bernoulli, binomial,
and negative binomial distributions. When P has the Beta(a, b)
distribution with probability density function

fP (p; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1,

the posterior after observing k successes in m trials has the Beta(a+
k, b+m−k) distribution. Thus, if we have started with a Beta(α, β)
prior, reaching node (k,m) in the trellis implies the posterior distri-
bution is Beta(α+ k, β +m− k).

Key facts about P ∼ Beta(a, b) are that its mode is (a−1)/(a+
b− 2), its mean is E[P ] = a/(a+ b), and its variance is

σ2
a,b = var(P ) =

ab

(a+ b)2(a+ b+ 1)
. (2)
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Suppose a sequence of trials reaches a node in the trellis corre-
sponding to the posterior distribution Beta(a, b). The Bayes risk
without performing an additional trial Rstop(a, b) is the variance
σ2
a,b given in (2). When one additional trial is performed, the pos-

terior distribution is either Beta(a + 1, b) if the outcome of the ad-
ditional trial is a success, or Beta(a, b + 1) if the outcome of the
additional trial is a failure. Therefore, the mean Bayes risk resulting
from continuing with one additional trial is

Rcont(a, b) = E
[
(1− P )σ2

a,b+1 + P σ2
a+1,b

]
=

ab

(a+ b)(a+ b+ 1)2
. (3)

The Bayes risk reduction from one additional trial is

∆R(a, b) = Rstop(a, b)−Rcont(a, b)

=
ab

(a+ b)2(a+ b+ 1)2
. (4)

The Bayes risk reduction provides an intuitive – while also
theoretically sound – guide to allocating trials. Starting from a
Beta(α, β) prior, upon reaching node (k,m), the posterior is
Beta(α + k, β + m − k). Then, the Bayes risk reduction from
an additional trial would be

∆R(k,m;α, β) =
(α+ k)(β +m− k)

(α+ β +m)2(α+ β +m+ 1)2
. (5)

Let ∆thresh > 0 denote a specified threshold value for the reduction
in Bayes risk that justifies an additional trial. Then the probabilities
of continuing at each node of the trellis can be given by

qk,m =

{
1, ∆R(k,m;α, β) ≥ ∆thresh;

0, ∆R(k,m;α, β) < ∆thresh.
(6)

Figure 2(a) shows an example of a trellis marked with ∆R(k,m;α, β)
values, and Figure 2(b) shows the resulting continuation probabili-
ties for ∆thresh = 0.005.

Through a Lagrangian formulation, one can formally establish
that sweeping ∆thresh over [0,∞) is equivalent to varying the trial
budget n over [0,∞), except that we are only achieving the values
of E[T ] reachable with qk,m ∈ {0, 1}. Intermediate values of E[T ]
can be achieved by finding (k∗,m∗) such that ∆R(k,m;α, β) is
largest among those below ∆thresh and varying qk∗,m∗ over (0, 1).

Notice that for a fixed trellis depth m, the denominator of
(5) is fixed, and the numerator of (5) is a product of factors with
fixed sum. Thus, from the arithmetic–geometric mean inequality,
∆R(k,m;α, β) is largest where the posterior distribution is most
symmetric. This is apparent in the example in Figure 2(b); since we
have started with a uniform prior, the center of each row represents
a symmetric posterior, and additional observations are most merited
near the center of each row. Starting with a highly asymmetric prior
(α ≪ β or α ≫ β), the same principle explains an asymmetry in
the optimal continuation probabilities.

The phenomenon of more trials being merited when p is near
1
2

counteracts the traditional MSE of p(1− p)/n being largest for p
near 1

2
. This is illustrated in Figure 3, which shows RMSE as a func-

tion of p with and without the optimal stopping. We have optimized
for MSE averaged over p and have obtained a modest improvement
in this average. A more significant reduction in the worst-case MSE
is a by-product of the optimization.

.02778

.01389 .01389

.00750 .01000 .00750

.00444 .00667 .00667 .00444

.00283 .00454 .00510 .00454 .00283

.00191 .00319 .00383 .00383 .00319 .00191

(a) ∆R(k,m;α, β) for Beta(1, 1) prior.

q0,0=1

q0,1=1 q1,1=1

q0,2=1 q1,2=1 q2,2=1

q0,3=0 q1,3=1 q2,3=1 q3,3=0

q0,4=0 q1,4=0 q2,4=1 q3,4=0 q4,4=0

q0,5=0 q1,5=0 q2,5=0 q3,5=0 q4,5=0 q5,5=0

(b) qk,m values from applying (6) with ∆thresh = 0.005.

Fig. 2. Trellis representations of the Bayes risk reductions from
an additional trial and the resulting continuation probabilities for
∆thresh = 0.005. A Beta(1, 1) prior for P (i.e., uniform) is as-
sumed.
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0

0.01

0.02

0.03

0.04

0.05

Fig. 3. Dependence of RMSE on the true Bernoulli parameter p,
with and without the proposed optimal stopping, when p has a uni-
form prior and the trial budget is n = 123. For p values sampled
at multiples of 0.01, the mean from 100 000 experiments is shown;
additionally, standard deviations are shown for p values that are mul-
tiples of 0.1. The proposed optimal stopping reduces the MSE (av-
eraged over p) from 0.00134 to 0.00129.
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(b) n = 83 and Beta(2, β) prior.

Fig. 4. MSE of pixelwise MMSE estimates for Shepp-Logan Phan-
tom image scaled to [0.001, 0.201].

3. ARRAYS OF BERNOULLI PROCESSES

Active imaging systems typically raster scan the scene by probing
patch (i, j), i = 1, . . . , Ni and j = 1, . . . , Nj , using pulsed il-
lumination. The measured data – used to form an image of the
scene – are arrays [ki,j ]i,j and [mi,j ]i,j ; i.e., the number of detec-
tions (successes) and number of illumination pulses (trials) for each
scene patch. Note that the conventional approach of a fixed number
of trials makes mi,j = n for all (i, j) and {ki,j} random, whereas
both {ki,j} and {mi,j} are random when the proposed approach is
applied pixelwise.

The Bernoulli process generated by probing an individual scene
patch (i, j) is typically correlated with the processes of neighboring
patches. This can be exploited in the image formation stage through
mechanisms inspired by any of various image compression or de-
noising methods. For this initial demonstration of adaptive acqui-
sition, we apply total variation (TV) regularization. An alternative
approach is to attempt to exploit the spatial correlation at the data
acquisition stage. This could involve updating the Beta distributions
not only for the probed pixel itself, but also for pixels within some
neighborhood. The interaction of the adaptive acquisition with reg-
ularized estimation is nontrivial and not yet well understood. There-
fore, we will defer a study of this approach to future works and focus
on the merits of a pixelwise-adaptive data acquisition scheme with
TV-regularized reconstructions in the subsequent section.

4. IMAGE ESTIMATION METHODS AND RESULTS

We present simulation results to quantify the performance of the
proposed method using MATLAB’s built-in Shepp–Logan phantom
with 100×100 pixels. The pixel values pi,j , rescaled to fall between
(0, 1), are used to simulate the underlying Bernoulli process for each
pixel to obtain ki,j and mi,j . We focus here on comparing conven-
tional fixed number of trials against the data-adaptive stopping rule.

4.1. Stopping rule without TV regularization

We consider pixelwise MMSE estimation using Beta(α, β) priors
without regularization: p̂MMSE[i, j] = (ki,j + α)/(mi,j + α+ β).

Reconstruction

MSE= 3.4056× 10−5

Reconstruction

MSE= 1.1779× 10−5

Fig. 5. Fixed number of trials (left) and optimal stopping (right),
showing an MSE improvement of 4.61 dB. The phantom image is
rescaled to [0.001, 0.101] and the Beta(2, 152) prior is assumed.
Both images are formed using TV-regularized ML estimation and
trial budget n = 200.

Table 1. The average reconstruction MSE for the fixed number of
trials (Binomial) stopping rule and the adaptive stopping rule, for
two different trial budgets n.

Budget Method
Binomial + TV Adaptive (proposed) + TV

n = 58 9.14e-05 3.43e-05
n = 196 3.37e-05 1.26e-05

For one choice of prior, Figure 4(a) shows MSE improvements of at
least 2 dB for the data-adaptive stopping rule over the conventional
fixed number of trials for the entire range of simulated trial budgets
n. For a fixed budget n = 83, Figure 4(b) suggests that significant
MSE improvements can be gained when the assumed Beta prior be-
comes more asymmetric (increasing β).

4.2. Stopping rule with TV-regularized image formation

Pixelwise, the ML estimate would be p̂ML[i, j] = ki,j/mi,j . Recon-
struction quality can be improved through the use of TV-regularized
ML estimation [2, 22]. In one typical experimental trial shown in
Figure 5, the TV-regularized reconstruction from data obtained with
the adaptive stopping rule outperforms the conventional method with
a 4.61 dB improvement in MSE.

The average MSE improvement is studied by performing 100
independent experiments with TV-regularized image reconstruction
when the data is acquired using the Binomial (fixed) and proposed
stopping rules. As summarized in Table 1, we observe an overall im-
provement in reconstruction MSE when adaptive acquisition is used.
Interestingly, the improvement factor remains constant at 4.26 dB for
both trial budgets.

5. CONCLUSION

We established an optimal stopping framework for estimating
Bernoulli parameters that improves the trade-off between MSE
and mean number of trials, especially when the prior for the pa-
rameter is highly asymmetric. Application of the framework in
TV-regularized image estimation was shown to provide significant
MSE improvement in active imaging.

4432



6. REFERENCES

[1] T. L. Fine, Probability and Probabilistic Reasoning for Elec-
trical Engineering. Upper Saddle River, NJ: Pearson Prentice
Hall, 2006.

[2] D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-
efficient computational 3d and reflectivity imaging with single-
photon detectors,” IEEE Trans. Comput. Imaging, vol. 1,
pp. 112–125, June 2015.

[3] M. Wahl, “Time-correlated single photon counting (TCSPC),”
tech. rep., PicoQuant, Berlin, Germany, 2014.

[4] F. J. Anscombe, “Sequential estimation,” J. Roy. Statist. Soc.
Ser. B, vol. 15, no. 1, pp. 1–29, 1953.

[5] J. B. S. Haldane, “On a method of estimating frequencies,”
Biometrika, vol. 33, pp. 222–225, Nov. 1945.

[6] M. C. K. Tweedie, “Inverse statistical variates,” Nature,
vol. 155, p. 453, Apr. 14, 1945.

[7] P. Cabilio and H. Robbins, “Sequential estimation of p with
squared relative error loss,” Proc. Nat. Acad. Sci. USA, vol. 72,
pp. 191–193, Jan. 1975.

[8] P. Cabilio, “Sequential estimation in Bernoulli trials,” Ann.
Statist., vol. 5, pp. 342–356, Mar. 1977.

[9] S. L. Hubert and R. Pyke, “Sequential estimation of functions
of p for Bernoulli trials,” in Game Theory, Optimal Stopping,
Probability and Statistics, vol. 35 of Lecture Notes-Monograph
Series, pp. 263–294, Institute of Mathematical Statistics, 2000.
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