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ABSTRACT

We propose a non-adaptive unequal error protection (UEP)
querying policy based on superposition coding for the noisy
20 questions problem. In this problem, a player wishes to
successively refine an estimate of the value of a continuous
random variable by posing binary queries and receiving noisy
responses. When the queries are designed non-adaptively as
a single block and the noisy responses are modeled as the
outputs of a binary symmetric channel the 20 questions prob-
lem can be mapped to an equivalent problem of channel cod-
ing with UEP. A new non-adaptive querying strategy based
on UEP superposition coding is introduced whose estimation
error decreases with an exponential rate of convergence that
is significantly better than that of the UEP repetition coding
introduced by Variani et al. (2015). In fact, we show that
the proposed non-adaptive UEP querying policy achieves the
same order convergence rate as the adaptive policy.

Index Terms— Noisy 20 questions problem, estimation,
superposition coding, unequal error protection.

1. INTRODUCTION

Consider a noisy 20 questions game between a player and an
oracle. The objective of the player is to estimate the value
of a continuous target variable X ∼ unif[0, 1]. The player
asks binary queries to the oracle who knows the value of X ,
and receives a noisy version of the oracle’s correct answers
transmitted through a binary symmetric channel with flipping
probability ε ∈ (0, 1/2), denoted BSC(ε). The sequence of
queries is designed by a controller that may either operate
open-loop (non-adaptive 20 questions) or use feedback (adap-
tive 20 questions). The central question is: What is the opti-
mal sequence of queries to estimate the value of X with a
minimum estimation error for a fixed number of queries? This
general setup of the noisy 20 questions game and the optimal
query design problem is of broad interest, arising in various
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areas, including active learning [2, 3], optimal sensing [4] and
experimental design [5, 6], with diverse applications. For ex-
ample, a target localization problem in a sensor network [7]
can be modeled as a noisy 20 questions game where a player
(agency) aims to locate a target by receiving query responses
from sensors probing the region of interest.

In the noisy 20 questions problem, estimates of the coeffi-
cients in dyadic expansion of the variableX ≈ 0.B1B2 . . . Bk
may contain errors. Since the errors in the more significant
bits (MSBs) cause a higher estimation error than do the errors
in the less significant bits (LSBs), it is desirable to provide
unequal error protection for MSBs vs. LSBs in order to min-
imize the estimation error with a limited number of queries.

One way to provide unequal error protection is repeti-
tion coding. In repetition coding, each bit is queried multiple
times, with the number of repetitions varying in accordance
with the desired level of unequal error protection. Such a UEP
repetition coding approach to the noisy 20 questions problem
was considered in [8]. It was shown that the mean squared
error (MSE) of this approach decreases as order O(e−c1

√
N ),

c1 > 0, whereN is the number of queries. This square root of
N rate is slower than order O(e−c2N ) rate with some c2 > 0,
achievable by the bisection-based adaptive 20 questions strat-
egy [9] that corresponds to Horstein’s coding scheme for a
BSC(ε) with perfect feedback [10].

The main contribution of this paper is to provide a new
non-adaptive querying strategy based on superposition cod-
ing [11] that can provide UEP for two levels of priority, i.e.,
a strictly better error protection for MSBs than that for LSBs,
and can achieve better MSE convergence rate than that of rep-
etition coding in [8]. We show that the proposed querying
strategy achieves MSE that decreases exponentially in N , as
contrasted to

√
N , matching the error rate of the adaptive 20

questions strategy [9]. Furthermore, this strategy achieves a
better scale factor in the MSE exponent as compared to that
of random block codes employing equal error protection.

2. PROBLEM STATEMENT

To estimate an unknown random variable X ∼ unif[0, 1], a
player asks an oracle whether X is located within some sub-
region Qi ⊂ [0, 1], either connected or non-connected. The
oracle gives the correct answer Zi(X) = 1(X ∈ Qi), and
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the player receives a noisy version Yi ∈ {0, 1} of the ora-
cle’s answer transmitted through a BSC(ε), which flips the
oracle’s answer with probability ε ∈ (0, 1/2). After receiving
(Y1, . . . , YN ), the player calculates an estimate X̂N ofX . We
consider two types of estimation errors. The first is the mean
squared error (MSE) E[|X − X̂N |2]. The second is the quan-
tized MSE E[cq(X, X̂N )] where the cost function cq(X, X̂N )
with 2k levels is a stepwise function defined as

cq(X, X̂N ) = (d2−k)2, when

d2−k − 2−k/2 < |X − X̂N | ≤ d2−k + 2−k/2,

for d ∈ {0, . . . , 2k − 1},
(1)

for X, X̂N ∈ [0, 1]. We consider the cost function (1) when
the objective of the problem is to estimate the value of X up
to the first k bits (B1, . . . , Bk) in the dyadic expansion of X .

The problem of optimal query design can be mapped to
an equivalent problem of channel coding. For non-adaptive
block querying, we suppose that the player estimates X by
querying about the first k bits in the dyadic expansion of
X ≈ 0.B1 . . . Bk where k = NR/ ln 2 for a fixed rateR > 0.
Discovering (B1, . . . , Bk) is equivalent to finding the index
M =

∑k
i=1Bi2

k−i ∈ {0, . . . , 2k − 1} of the interval IM :=
[M2−k, (M + 1)2−k) containing the value of the target vari-
able, X ∈ IM . Here the region of interest [0, 1] is uniformly
quantized into 2k disjoint sub-intervals {I0, . . . , I2k−1} of
length 2−k. Assume that each querying region Qi is a union
of some subset of quantized intervals {I0, . . . , I2k−1}. By
considering the index M ∈ {0, . . . , 2k − 1} as a message
transmitted from the oracle to the player and the oracle’s an-
swers (Z1, . . . , ZN ) to the block of queries (Q1, . . . , QN )
as a codeword, block querying can be mapped to an equiv-
alent problem of block channel coding over a BSC(ε). When
z(m) = (z

(m)
1 , . . . , z

(m)
N ) is a length-N codeword for a mes-

sage m ∈ {0, . . . , 2k − 1}, the associated i-th querying re-
gion Qi becomes the union of the sub-intervals {Im′} for
message m′’s such that the i-th answer bit z(m

′)
i equals 1.

Therefore, the encoder specifies a block of questions, and
vice versa. After receiving N noisy answers (Y1, . . . , YN ),
the player generates estimates (B̂1, . . . , B̂k) of (B1, . . . , Bk)

and M̂ =
∑k
i=1 B̂i2

k−i of the message M .
For the finite resolution estimator defined by X̂N,finite :=

M̂2−k+2−k/2, the MSE E[|X−X̂N,finite|2] can be written as
a sum of the quantized MSE E[cq(X, X̂N,finite)] and the error
from finite resolution,

E[|X − X̂N,finite|2] = E[cq(X, X̂N,finite)] + c2−2k, (2)

for some constant 0 < c ≤ 1/4. Assuming that the resolution
k scales as k = NR/ ln 2 in the number N of queries for
some fixed positive rate R > 0, we denote by E∗MSE,policy(R)
and E∗q,policy(R) the best achievable exponentially decreasing
rates of the MSE and of the quantized MSE in N at a fixed

rate R, respectively, for some policy, i.e.,

E∗MSE,policy(R) := lim inf
N→∞

− lnE[|X − X̂N,finite|2]
N

, (3)

E∗q,policy(R) := lim inf
N→∞

− lnE[cq(X, X̂N,finite)]

N
. (4)

Then the equality in (2) implies that as N → ∞, the expo-
nential convergence rate of the MSE E[|X − X̂N,finite|2] in
N is dominated by the minimum between the exponentially
decreasing rate of the quantized MSE and 2R, i.e.,

E∗MSE,policy(R) = min{E∗q,policy(R), 2R}. (5)

In this paper, we analyze the performance of the querying pol-
icy by first calculating the best achievable quantized-MSE ex-
ponent E∗q,policy(R) at a fixed rate R > 0 for querying reso-
lution of k = NR/ ln 2 bits, and then calculating the corre-
sponding MSE exponent E∗MSE,policy(R) by using (5).

Note that with the finite-resolution estimator X̂N,finite =

M̂2−k+2−k/2, the quantized MSE can be bounded above as

E[cq(X, X̂N,finite)] ≤
k∑
i=1

Pr(B̂i 6= Bi)2
−2(i−1), (6)

by using E[|X − X̂N |2
∣∣B̂i 6= Bi, B̂

i−1
1 = Bi−11 ] ≤ 2−2(i−1).

This upper bound shows how each bit-error probability con-
tributes to the estimation error. As the bit position i increases
corresponding to lower significance, the weights on the bit er-
ror probabilities decrease exponentially in i. In order to min-
imize the upper bound on the the quantized MSE for a fixed
number of querying N , we need to design a querying strategy
(or the associated channel coding) that can provide unequal
error protection depending on the bit positions. 1

3. PREVIOUS APPROACHES

We review two well-known non-adaptive querying policies.

3.1. Non-adaptive UEP Repetition Policy

For the non-adaptive UEP repetition policy [8], each raw bit
Bi of M = (B1, B2, . . . , Bk) is repeatedly queried Ni times,
where the total number of queries is restricted to

∑k
i=1Ni =

N . When the answer bit Bi is transmitted Ni times through a
BSC(ε), a simple majority voting algorithm is the maximum
likelihood (ML) decoder for Bi achieving Pr(B̂i 6= Bi) ≤
e−Ni·DB(1/2‖ε). By assigning different numbers of repetitions
(N1, N2, . . . Nk) for each information bit Bi, we can provide

1Notation: Let the bold face z or zN1 denote the length-N binary
sequence (z1z2 . . . zN ) where zt is the t-th bit of z. The entropy
of a binary random variable X distributed as Bernoulli(α) is denoted
HB(α). The Kullback-Leibler divergence between two Bernoulli distribu-
tions Bernoulli(α) and Bernoulli(β) is denoted DB(α‖β).
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unequal error protection. In [8], it was shown that the minimal
MSE achievable by UEP repetition coding with the optimal
choice of (N1, . . . , Nk) and k decreases exponentially in

√
N

but not faster than that

c1e
−c2
√
N ≤ min

(N1,...,Nk),k
E[|X − X̂N,finite|2] ≤ c3e−c4

√
N ,

(7)
for some positive constants c1, c2, c3, c4 > 0. This implies
that the best achievable quantized-MSE exponent of repeti-
tion coding is E∗q,repetition(R) = 0 at any positive rate R > 0.

3.2. Non-adaptive Random Coding Policy

We also consider a non-adaptive block-querying strategy
based on random block coding [12]. The encoding map
f : {0, . . . , 2k − 1} → {0, 1}N of the random block codes
of rate R = k ln 2/N independently generates length-N
codewords z(m) = (z

(m)
1 , . . . , z

(m)
N ) := f(m) each of which

is composed of i.i.d. symbols following the Bernoulli(1/2)
distribution. This is equivalent to independently choosing
a querying region at each round as the union of a subset of
intervals {[m′2−k, (m′ + 1)2−k) : m′ ∈ {0, . . . , 2k − 1}},
each of which is randomly included in the querying region
with probability 1/2. With this policy, it is guaranteed that the
quantized MSE of random block coding decreases exponen-
tially in N with exponent

E∗q,rc(R) = Er(R) (8)

for

Er(R) =

{
E0(1/2, ε)−R, 0 ≤ R < Rcrit(ε),

DB(γGV(R)‖ε), Rcrit(ε) ≤ R ≤ C,
(9)

where E0(1/2, ε) = − ln(1/2 +
√
ε(1− ε)), Rcrit(ε) =

DB(γcrit(ε)‖1/2) with γcrit(ε) =
√
ε√

ε+
√
1−ε , C = HB(1/2)−

HB(ε), and γGV(R) is the normalized Gilbert-Varshamov
distance, defined such that DB(γGV(R)‖1/2) = R.

4. NON-ADAPTIVE BLOCK QUERYING BASED ON
SUPERPOSITION CODING

In this section, we propose a new non-adaptive block querying
policy based on superposition coding [11]. By using superpo-
sition coding, we design a querying strategy that provides a
better error protection for MSBs than for LSBs in the dyadic
expansion of the target variable X ≈ 0.B1B2 . . . Bk. By un-
equally distributing a fixed amount of querying resource to the
MSBs and LSBs of the target variable, this querying strategy
achieves better MSE convergence rates than that of random
block coding, which distributes the querying resource equally
to (B1, B2, . . . , Bk).

We first partition the information bits (B1, . . . , Bk) into
two sub-groups, a group containing the first k1 < k bits

(a) Random Coding

{0, 1}N {0, 1}N

(b) Superposition coding

cloud 
center
u(m1)

satellite
codeword
z(m1,m2)

Fig. 1. The distributions of codewords (each color dot) in the output
space {0, 1}N for random block coding and for superposition coding
with two levels of error protection. To better protect the color infor-
mation of the codewords, which represents the MSBs of the message
of the codewords, the same color codewords should be clustered to-
gether as those of superposition coding.

of X (B1, . . . , Bk1) and the other group containing the re-
maining k2 := k − k1 bits of X (Bk1+1, . . . , Bk1+k2). The
group of MSBs (B1, . . . , Bk1) determines the more impor-
tant partial message M1 ∈ {0, . . . , 2k1 − 1}, while the group
of LSBs (Bk1+1, . . . , Bk1+k2) determines the less important
partial message M2 ∈ {0, . . . , 2k2 − 1}. Denote the rates
of M1 (MSBs) and of M2 (LSBs) by R1 = (k1 ln 2)/N and
R2 = (k2 ln 2)/N , respectively. Superposition codes are con-
structed by superimposing two types of random block codes
generated by different distributions. The first type of random
block codes of lengthN and rateR1 is composed of eNR1 bi-
nary length-N codewords, {u(m1)}, m1 ∈ {0, . . . , eNR1 −
1}, which encode the more important partial message m1

(MSBs). The symbols of every codeword are chosen inde-
pendently at random with Bernoulli(1/2) distribution. We call
these partial codewords “cloud centers” in the output space
{0, 1}N . The second type of random block codes of length
N and rate R2 is composed of codewords {v(m2)}, m2 ∈
{0, . . . , eNR2 − 1}, which encode the less important partial
message m2 (LSBs). Every symbol of every codeword in
{v(m2)} is i.i.d. with Bernoulli(α) distribution for a fixed
α ∈ (0, 1/2). The superposition codes Cs of rate R = R1 +
R2 are composed of {z(m1,m2)} for messages (m1,m2) ∈
{0, . . . , eNR1 − 1} × {0, . . . , eNR2 − 1}, where z(m1,m2) =
u(m1) ⊕ v(m2) and ⊕ is the bitwise XOR. The codewords
{z(m1,m2)} for a fixed m1 are called “satellite codewords”
for the respective cloud center u(m1).

Fig. 1 illustrates the distribution of codewords with su-
perposition coding as compared to that of random block cod-
ing. In the figure, the partial message M1 (MSBs) is rep-
resented by the color of the codeword. Codewords with the
same color have the same partial message M1 (MSBs), while
their M2’s (LSBs) are different. For the random block coding
policy, codewords of the same color are uniformly distributed
in {0, 1}N . When a noise vector corrupts the transmitted
codeword beyond the correct decoding region, the decoded
codeword may not have the same color as that of the transmit-
ted codeword, since the codewords are uniformly distributed.
In contrast, in the proposed superposition coding policy the
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2R

E⇤
q,rc(R) = Er(R)

Eq,spc(R)

Fig. 2. A plot of E∗
q,rc(R) = Er(R), Eq,spc(R), and 2R for

a BSC(ε) with ε = 0.45 where E∗
q,rc(R) is the best achiev-

able quantized-MSE exponent with random block coding and
Eq,spc(R) is a lower bound on the best achievable quantized-MSE
exponent E∗

q,spc(R) with superposition coding. For any R ∈
(E0(1/2, ε)/3, /C), there is a gain in the achievable quantized-MSE
exponent from superposition coding than that of random coding.

same color codewords are concentrated together. Therefore,
even if the channel noise corrupts the transmitted codeword,
the color information will have higher probability of being
correctly decoded. As the parameter α of the superposition
coding policy decreases from 1/2 to 0, the satellite codewords
become more and more concentrated around the cloud cen-
ters. This allows a better error protection for M1 (MSBs), but
at the cost of worse error protection of M2 (LSBs) since it
becomes harder to distinguish between the same color code-
words as they get closer to each other.

Note that the quantized MSE can be bounded above by

E[cq(X, X̂N,finite)] ≤
Pr(M̂1 6=M1) + Pr(M̂2 6=M2|M̂1 =M1)e

−2NR1 .
(10)

Thus, the quantized MSE exponent E∗q,spc(R) in (4) of super-
position coding optimized over (R1, R2, α) is larger than

E∗q,spc(R) ≥
max

(R1,R2,α)
min{E∗MSBs(R1, R2, α), E

∗
LSBs(R2, α) + 2R1}

whereE∗MSBs(R1, R2, α) = lim infN→∞
− ln Pr(M̂1 6=M1)

N and

E∗LSBs(R2, α) = lim infN→∞
− ln Pr(M̂2 6=M2|M̂1=M1)

N . With
the proposed non-adaptive policy based on superposition cod-
ing, we prove a strictly positive gain in the quantized MSE ex-
ponent E∗q,spc(R) compared to the best achievable quantized
MSE exponent E∗q,rc(R) in (8) of random block coding.

Theorem 1 For a very noisy BSC(ε) with ε = 0.5 − δ for a
sufficiently small δ > 0, the best achievable quantized-MSE
exponent E∗q,spc(R) of superposition coding is strictly larger
than the best achievable quantized-MSE exponent E∗q,rc(R)
of random block coding for every rateR ∈ (E0(1/2, ε)/3, C)
whereE0(1/2, ε) = − ln(1/2+

√
ε(1− ε)) ≈ C/6 and C =

HB(1/2)−HB(ε).

Fig. 3. Monte Carlo simulation (3000 runs) for Quantized-
MSE E[cq(X, X̂N,finite)] of the querying policies based on super-
position coding (dash-dot line) and of random block coding (solid
line) for different number of queries, where the rates (R1, R2) of
the partial messages (M1,M2) are fixed as (R1, R2) = (0.5(C −
R2), 0.9C2(α)) for capacity C of the BSC(ε) and for the maximum
achievable rate C2(α) of M2. We set ε = 0.3 and α = 0.1. From
the simulations, we checked that the quantized MSE from random
block coding is larger on average and also its empirical distribution
has heavier tail compared to that of superposition coding.

A detailed proof of this theorem can be found in the longer
version of this paper [1]. In Fig 2, we provide a plot
of Eq,spc(R) (dash-dot line), which is a lower bound on
E∗q,spc(R), and E∗q,rc(R) (solid line), which is the best achiev-
able quantized-MSE exponent using the random block coding
policy. Also plotted is the line 2R (dashed line). We can
observe the gain in the quantized-MSE exponent from super-
position coding in R ∈ (E0(1/2, ε)/3, C). Moreover, in this
high rate regime, the MSE exponent in (5) is dominated by
the quantized MSE exponent. Therefore, the MSE exponent
of the proposed superposition coding policy is also strictly
larger than that of the random block coding policy in this high
rate regime.

Note that our theorem is stated for a very noisy channel
(crossover probability ε ≈ 1/2). In Fig. 3, we compare Monte
Carlo simulation for the quantized MSE E[cq(X, X̂N,finite)]
of the proposed superposition coding policy (dash-dot line)
and that of the random block coding policy (sold line). This
shows that our proposed policy outperforms that of random
block coding even in moderate noise regimes.

5. CONCLUSION

The problem of optimal query design was considered with
the goal of estimating the value of a target variable. We pro-
posed a new non-adaptive block-querying policy based on su-
perposition coding that can provide unequal error protection
to MSBs vs. LSBs. The proposed policy achieves the same
order convergence rate as the adaptive policy, with the MSE
exponent larger than that of the random block coding policy.
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