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ABSTRACT

Machine learning systems learn from and make predictions
by building models from observed data. Because large mod-
els tend to overfit while small models tend to underfit for a
given fixed dataset, a critical challenge is to select an appro-
priate model (e.g. set of variables/features). Model selec-
tion aims to strike a balance between the goodness of fit and
model complexity, and thus to gain reliable predictive power.
In this paper, we study a penalized model selection technique
that asymptotically achieves the optimal expected prediction
loss (referred to as the limit of learning) offered by a set of
candidate models. We prove that the proposed procedure is
both statistically efficient in the sense that it asymptotically
approaches the limit of learning, and computationally effi-
cient in the sense that it can be much faster than cross valida-
tion methods. Our theory applies for a wide variety of model
classes, loss functions, and high dimensions (in the sense that
the models’ complexity can grow with data size). We released
a python package with our proposed method for general usage
like logistic regression and neural networks.

Index Terms— Cross-validation, Computational effi-
ciency, Feature selection, High dimension, Limit of learning

1. INTRODUCTION

How much knowledge can we learn from a given set of data?
Statistical modeling provides a simplification of real world
complexity. It can be used to learn the key patterns or rela-
tionships from available data and to predict the future data.
In order to model the data, typically the first step in data an-
alysts is to narrow the scope by specifying a set of candidate
parametric models (referred to as model class). The model
class can be determined by exploratory studies or scientific
reasoning. For data with specific types and sizes, each postu-
lated model may have its own advantages. In the second step,
data analysts estimate the parameters and “goodness of fit” of
each candidate model. Simply selecting the model with the
best fitting performance usually leads to suboptimal results.
For example, the largest model always fits the best in a nested
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model class. But too large a model can lead to inflated vari-
ance and thus severe overfitting. Therefore, the third step is
to apply a model selection procedure. State-of-art selection
procedure can be roughly categorized into two classes, the
penalized selection and cross-validation. We shall elaborate
on those in the next section.

How can we quantify the theoretical limits of learning
procedures? We first introduce the expected prediction loss
that quantifies the predictive power of each candidate model.

Definition 1 (Expected prediction loss). The loss function
for each data size n and α ∈ An (model class) is a map
ln : Z × Hn[α] → R, usually written as ln(z,θ;α), where
Z is the data domain, Hn[α] is the parameter space associ-
ated with model α, and α is included to emphasize the model
under consideration. For a loss function and a given dataset
z1, . . . , zn which are independent and identically distributed
(i.i.d.), each candidate model α produces an estimator θ̂n[α]
(referred to as the minimum loss estimator) defined by

θ̂n[α]
∆
= argmin

θ∈Hn[α]

1

n

n∑
i=1

ln(zi,θ;α). (1)

Moreover, the expected prediction loss given by candidate
model α, denoted by Ln(α), is defined by

Ln(α)
∆
= E∗ln

(
·, θ̂n[α];α

)
=

∫
Z
p(z)ln

(
z, θ̂n[α];α

)
dz.

Here, E∗ denotes the expectation with respect to the distri-
bution of a future (unseen) random variable z. We also de-
fine the risk by Rn[α] = E∗Ln[α], where the expectation in
Rn[α] is taken with respect to the observed data.

Typically z consists of response y and covariates x, and
only the entries of x associated with α are involved in the
evaluation of ln. Throughout the paper, we consider loss func-
tions ln(·) such that Ln[α] is always nonnegative. A common
choice is to use negative log-likelihood of model α minus that
of the true data generating model. Based on Definition 1, a
natural way to define the limit of learning is by using the op-
timal prediction loss.

Definition 2 (Limit of learning). For a given data (of size
n) and model class An, the limit of learning (LoL) is defined
as argminα∈An

Ln(α), the optimal expected prediction loss
offered by candidate models.
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We note that the LoL is associated with three key ele-
ments: data, loss function, and model class. Motivated by the
original derivation of Akaike information criterion (AIC) [1,
2] and Takeuchi’s information criterion (TIC) [3], we propose
a penalized selection procedure and prove that it can approach
the LoL under reasonable assumptions. Those assumptions
allow a wide variety of loss functions, model classes (i.e.
nested, non-overlapping or partially-overlapping), and high
dimensions (i.e. the models’ complexity can grow with data
size). Our theoretical results extend the classical statistical
theory on AIC for linear (fixed-design) regression models.
Moreover, we also review the conceptual and technical con-
nections between cross validation and information theoretical
criteria. In particular, we show that the proposed procedure
can be much more computationally efficient than cross vali-
dation (with the same level of predictive power).

2. LIMIT OF LEARNING

2.1. Notation

Let An, α, dn[α], Hn[α] ⊂ Rdn[α] denote respectively a set
of candidate models, a candidate model, its dimension, its
associated parameter space. Let dn

∆
= maxα∈An dn[α] de-

note the dimension of the largest candidate model. We shall
frequently use subscript n to emphasize the dependency on n,
and include an α in the arguments of many variables or func-
tions in order to emphasize their dependency on the model
(and parameters space) under consideration. For a measur-
able function f(·), we define Enf(·) = n−1

∑n
i=1 f(zi).

For example, Enln(·,θ;α) = n−1
∑n

i=1 ln(zi,θ;α). We

let ψn(z,θ;α)
∆
= ∇θln(z,θ;α), and ∇θψn(z,θ;α)

∆
=

∇2
θln(z,θ;α), which are respectively measurable vector-

valued and matrix-valued functions of θ. We define the
matrices Vn(θ;α)

∆
= E∗∇θψn(·,θ;α) and Jn(θ;α)

∆
=

E∗
{
ψn(·,θ;α) × ψn(·,θ;α)T

}
. Recall the definition of

Ln[α]. Its sample analog (also referred to as the in-sample

loss) is defined by L̂n[α]
∆
= Enln

(
·, θ̂n[α];α

)
. Similarly,

we define V̂n(θ;α)
∆
= En∇θψn(·,θ;α) and Ĵn(θ;α)

∆
=

En

{
ψn(·,θ;α) × ψn(·,θ;α)T

}
. We let θ∗n[α] denote the

minimum loss parameter defined by

θ∗n[α]
∆
= argmin

θ∈Hn[α]

E∗ln(·,θ;α). (2)

Throughout the paper, the vectors are arranged in column
and marked in bold. Let int(S) denote the interior of a set S.
Let ∥·∥ denote Euclidean norm of a vector or spectral norm of
matrix. For any vector c ∈ Rd (d ∈ N) and scalar r > 0, let
B(c, r)

∆
= {x ∈ Rd : ∥x− c∥ ≤ r}. For a positive semidefi-

nite matrix V and a vector x of the same dimension, we shall
abbreviate xTV x as ∥x∥2V . For a given probability measure

P∗ and a measurable function m, let ∥m∥P∗

∆
= (E∗m

2)1/2

denote the L2(P∗)-norm. Let eigmin(V ) (resp. eigmax(V ))

denote the smallest (resp. largest) eigenvalue of a symmet-
ric matrix V . For a sequence of scalar random variables fn,
we write fn = op(1) if limn→∞ fn = 0 in probability, and
fn = Op(1), if it is stochastically bounded.

We use → and →p to respectively denote the deterministic
and in probability convergences. Unless stated explicitly, all
the limits throughout the paper are with respect to n → ∞
where n is the sample size.

2.2. Approaching the LoL – Selection Procedure

To obtain the optimal predictive power, an appropriate model
selection procedure is necessary to strike a balance between
the goodness of fit, and model complexity based on the ob-
served data. The basic idea of penalized selection is to im-
pose an additive penalty term to the in-sample loss (i.e. good-
ness of fit), so that larger models are more penalized. In this
paper, we follow the aphorism that “all models are wrong”,
and assume that the model class under consideration is mis-
specified.

Definition 3 (Efficient learning). Our goal is to select
α̂n ∈ An that is asymptotically efficient, in the sense that
Ln[α̂n]/minα∈An Ln[α] →p 1 as n → ∞.

Note that this requirement is weaker than selecting the ex-
act optimal model argminα∈An

Ln[α]. Similar definition has
been adopted in the study of the optimality of AIC in the con-
text of autoregressive order selection [4] and variable selec-
tion in linear regression models [5]. We propose to use the
following penalized model selection procedure, which gener-
alizes TIC from negative log-likelihood to general loss func-
tions.

Generalized TIC (GTIC) procedure: Given data z1, . . . , zn
and a specified model class An. We select a model α̂ ∈ An

in the following way: 1) for each α ∈ An, find the minimal
loss estimator θ̂n[α] defined in (1), and record the minimum
as L̂n[α]; 2) select α̂ = argminα∈An

Lc
t [α], where

Lc
t [α]

∆
= L̂n[α] + n−1tr

{
V̂n(θ̂n[α];α)

−1Ĵn(θ̂n[α];α)
}
.

2.3. Related Work

A wide variety of model selection techniques have been
proposed in the past fifty years, motivated by different view-
points and justified under various circumstances. State-of-
art methods can be roughly categorized into two classes,
the penalized selection and cross-validation. Examples are
AIC [1, 2], BIC [6] (and its finite sample counterpart Bayes
factor [7]), minimum description length criterion [8], predic-
tive minimum description length criterion [9,10], generalized
information criterion, generalized cross-validation method
(GCV) [11], and the bridge criterion (BC) [12].

Is Cross-Validation Really The Best Choice?
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It is a common practice to apply 10-fold CV, 5-fold CV,
3-fold CV, or 30%-for-testing. In general, the advantages of
CV method are its stability and easy implementation. How-
ever, it has been shown that only the delete-d CV method with
limn→∞ d/n = 1 [13–16], or the delete-1 CV method [17]
(or leave-one-out, LOO) can exhibit asymptotic (large sam-
ple) optimality. In fact, the former CV exhibits the same
asymptotic behavior as BIC, which is typically consistent in a
well-specified model class (i.e. it contains the true data gener-
ating model), but is suboptimal in a mis-specified model class.
The latter CV is shown to be asymptotically equivalent to AIC
and GCV if dn[α] = o(n) [17], which is asymptotically effi-
cient in a mis-specified model class, but usually overfits in a
well-specified model class. We refer to [12, 18–20] for more
detailed discussions on the discrepancy and reconciliation of
the two types of selection criteria. Since the only optimal CV
is LOO-type (in mis-specified settings), it is more appealing
to apply AIC or TIC that gives the same asymptotic perfor-
mance and significantly reduces the computational complex-
ity by n times. For general (mis-specified) nonlinear model
class, we shall prove that GTIC procedure asymptotically ap-
proaches the LoL. While the asymptotic performance of LOO
is unclear in that case, typically it is more computationally
cumbersome to implement LOO. As a result, the GTIC pro-
cedure can be a promising competitor of various types of stan-
dard CVs adopted in practice.

2.4. Asymptotic Analysis of the GTIC Procedure

We need the following assumptions for asymptotic analysis.

Assumption 1. Data Zi, i = 1, . . . , n are independent and
identically distributed (i.i.d.).

Assumption 2. For each model α ∈ An, θ∗n[α] (as was de-
fined in (2)) is in the interior of the compact parameter space
Hn[α], and for all ε > 0 we have
lim infn→∞ infα∈An

(
infθ∈Hn[α]:∥θ−θ∗

n[α]∥≥ε E∗ℓn
(
·,θ;α

)
−

E∗ℓn
(
·,θ∗n[α];α

))
≥ ηε for some constant ηε > 0 that de-

pends only on ε. Moreover, we have

sup
α∈An

sup
θ∈Hn[α]

∣∣∣∣Enℓn
(
·,θ;α

)
− E∗ℓn

(
·,θ;α

)∣∣∣∣ →p 0,

as n → ∞, and ℓn(·,θ∗n[α];α) is twice differentiable in
int(Z) for all n, α ∈ An.

Assumption 3. There exist constants τ ∈ (0, 0.5) and δ > 0
such that

sup
α∈An

sup
θ∈Hn[α]∩B(θ∗

n[α],δ)

nτ

∥∥∥∥Enψn(·,θ;α)− E∗ψn(·,θ;α)
∥∥∥∥

is Op(1). Additionally, the map θ 7→ E∗ψn(·,θ;α) is differ-
entiable at θ ∈ int(Hn[α]) for all n and α ∈ An.

Assumption 4. There exist constants c1, c2 > 0 such that

lim inf
n→∞

min
α∈An

eigmin(Vn(θ
∗
n;α)) ≥ c1,

lim sup
n→∞

max
α∈An

eigmax(Vn(θ
∗
n;α)) ≤ c2.

Assumption 5. There exist constants r > 0, γ > 1, and mea-
surable functions m[α] : Z → R+ ∪ {0}, z 7→ m[α](z) for
each α ∈ An, such that for all n and θ1,θ2 ∈ B(θ∗n[α], r),

∥ψn(z,θ1;α)−ψn(z,θ2;α)∥ ≤ mn[α](z)∥θ1 − θ2∥,

and E∗mn[α] < ∞. Moreover, we have max
{
dγn card(An)

γ/2,

dn
√
log{dncard(An)}

}
× n−τ

∥∥∥∥supα∈An
mn[α]

∥∥∥∥
P∗

→ 0,

and for all n E∗ supθ∈Hn[α]∥ψn(·,θ;α)∥ < ∞.

Assumption 6. There exists a constant δ > 0 such that

sup
α∈An

sup
θ∈Hn[α]∩B(θ∗

n[α],δ)

∥Ĵn(θ;α)− Jn(θ;α)∥ →p 0,

sup
α∈An

sup
θ∈Hn[α]∩B(θ∗

n[α],δ)

∥V̂n(θ;α)− Vn(θ;α)∥ →p 0,

sup
α∈An

sup
θ,θ′∈Hn[α]∩B(θ∗

n[α],δ)

∥Vn(θ;α)− Vn(θ
′;α)∥ →p 0.

We define wn[α] =
1√
n

∑n
i=1ψn(zi,θ

∗
n[α];α). Clearly,

wn[α] has zero mean and variance matrix Jn(θ
∗
n[α];α), and

thus

E∗∥wn[α]∥2Vn(θ∗
n[α];α)

−1 = tr
{
Vn(θ

∗
n[α];α)

−1Jn(θ
∗
n[α];α)

}
.

Assumption 7. Suppose that the following regularity condi-
tions are satisfied.

inf
α∈An

n2τRn[α] → ∞, sup
α∈An

dn[α]

nRn[α]
→ 0.

Moreover, there exists a fixed constant m1 > 0 such that∑
α∈An

(nRn[α])
−2m1

∑
α∈An

E∗
{
ln(·,θ∗n[α];α)−

E∗ln(·,θ∗n[α];α)
}2m1 → 0, (3)

there exists a fixed constant m2 > 0 such that∑
α∈An

(nRn[α])
−2m2

∑
α∈An

E∗

[
∥wn[α]∥2Vn(θ∗

n[α];α)
−1

− tr
{
Vn(θ

∗
n[α];α)

−1Jn(θ
∗
n[α];α)

}]2m2

→ 0, (4)

and there exists a fixed constant m3 > 0 such that

lim sup
n→∞

∑
α∈An

(nRn[α])
−m3{E∗∥wn[α]∥m3+

E∗∥wn[α]∥2m3} < ∞.
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(a) Plot showing the loss of our predictor (GTIC) and cross validations at each data size

(b) Plot showing the computational costs.

Fig. 1: Experiment 1: logistic regression models

Theorem 1. Suppose that Assumptions 1-7 hold. Then the
α̂n selected by GTIC procedure is asymptotically efficient (in
the sense of Definition 3).

Remark 1 (Sketch of Technical Ideas). Classical asymp-
totic analysis typically relies on a type of uniform conver-
gence of empirical process around θ∗n[α]. Because our func-
tions are vector valued with dimension depending on data
size, we cannot directly use state-of-art technical tools such
as [21, Theorem 19.28]. The classical proof by White [22]
(in proving asymptotic normality in mis-specified class) can-
not be directly adapted, either, for parameter spaces that de-
pend on n. We therefore need to develop some new technical
tools in the proof. Due to page limits, the detailed proof will
be included in a full version of this paper.

3. NUMERICAL EXPERIMENTS

The model classes under consideration are logistic regression.
We also implemented and released a python package “gtic” at
https://pypi.python.org/pypi/gtic, in which we build a tensor
graph of GTIC upon the theano platform, applicable for both
generalized linear models and single-layer feed-forward neu-
ral networks (not included due to space limitation). Users can
simply provide their tensor variables of loss and parameters,
and obtain the GTIC instantly.

We generate data from a logistic regression model, where
the coefficient vector is β = 10×[1−1.5, . . . , n−1.5]T, and co-
variates x1, . . . , xn (with n = 100) are independent standard
Gaussian. We restrict the maximum dimension of candidate
models to be ⌊

√
n⌋. Here, a model of dimension d means that

the first d covariates are nonzero. The model class is nested
because a small model is a special case of a large model. We
summarize the results in Fig. 1. We numerically compute the
true prediction loss of each trained model (obtained by test-
ing on a large dataset), and then identify the optimal model
(with the least loss). In Fig. 1a, we compare the performance
of GTIC to different types of CV. Holdout takes 70% data
for training and tests on 30% data. It fluctuates throughout
the experiment, and most of time it yields the worst perfor-
mance. GTIC, 10-fold CV and LOO perform well in this ex-
periment. Although the optimal model of each data size is not
always identical to our selected model, their prediction losses
are very close. This result is consistent with our definition
of efficient learning. The computation cost of all approaches
is provided in Fig. 1b. Since GTIC performs almost as well
as LOO and 10-fold CV, we suggest using GTIC instead of
guessing the optimal number of fold for CV. With GTIC, we
do not need to sacrifice much on computation cost, but can
still achieve theoretically justifiable result which is as good as
LOO.
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