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ABSTRACT

The problem of testing whether an incomplete tensor lies in
a given tensor subspace, called tensor matched subspace de-
tection, is significant when it is unavoidable to have missing
entries. Compared with the matrix case, the tensor matched
subspace detection problem is much more challenging due to
the curse of dimensionality and the intertwinement between
the sampling operator and the tensor product operation. In
this paper, we investigate the subspace detection problem for
the transform-based tensor models. Under this framework,
tensor subspaces and the orthogonal projection onto a given
subspace are defined, and the energies of a tensor outside the
given subspace (also called residual energy in statistics) with
tubal-sampling and elementwise-sampling are derived. We
have proved that the residual energy of sampling signals is
bounded with high probability. Based on the residual energy,
the reliable detection is feasible.

Index Terms— Tensor subspace detection, transform-
based tensor model, tubal-sampling, elementwise-sampling.

1. INTRODUCTION

Matched subspace detection is widely used in many applica-
tions, such as image representation [1], MIMO system [2, 3],
compressive sensing [4, 5], shape detection [6], matrix and
tensor completion [7, 8, 9], etc. However, in cases such as
sensor networks, we can only obtain a signal with high loss
rate [10]. Therefore, it is necessary to testing whether an in-
complete signal lies within a given subspace. In [11], the
matched subspace detector under linear model with missing
data has been well studied. A nonlinear version of matched
subspace detector, using kernel functions, is given in the p-
resence of missing data in [12]. However, all these methods
are based on the vector space [11, 12, 13], and do not apply to
situations when signals are represented as multidimensional
data arrys, i.e., tensors, which capture the spatial and tempo-
ral correlations within the data. Therefore, it is urgent to pro-
pose a more efficient approach for tensor matched subspace
detection based on tensors.

This work was supported by the National Natural Science Foundation of
China under Grant 61671345.

In this paper, we focus on the problem of tensor matched
subspace detection for third-order transform-based tensors.
We formulate a binary hypothesis test. Suppose we have sig-
nal V ∈ Rn1×1×n3 , and let S ⊂ Rn1×r×n3 be a given sub-
space. Then the hypotheses are H0 : V ∈ S and H1 : V /∈
S. And we wish to decide whether V ∈ S or not based on
the samples of V . Tests are usually based on the energy of V
out of S (residual energy). However, the challenge of tensor
matched subspace detection is the sampling process is inter-
twined with the underlying tensor structure.

We exploit the tensor algebraic framework of L-product
[14], which is defined in a so-called transform domain for
any invertible linear transform. And the conventional t-
product [15, 16] is a spacial case of L-product. In this frame-
work, a tensor column subspace is spanned by the columns
of a tensor, and the orthogonal projection onto a tensor sub-
space is well defined. Furthermore, we proposed a scheme
for tensor matched subspace detection with tubal-sampling
and elementwise-sampling.

The main results of this paper show that the residual
energies of a signal with tubal-sampling and elementwise-
sampling are bounded with high probability. And based on
the residual energy of a sampling signal, the reliable detec-
tion of whether an incomplete signal lies in given subspace is
possible when the number of samples is slightly greater than
r for tubal-sampling while r× n3 for elementwise-sampling,
where r is the dimension of the given tensor subspace and n3

is the size of the third dimensionality of the subspace.

2. ALGEBRAIC FRAMEWORK AND PROBLEM
STATEMENT

2.1. Transform-based Tensor Model

Notations- A third-order tensor is denoted by calligraphic let-
ters, e.g., A ∈ Rn1×n2×n3 . A tube of a tensor is defined
by fixing all indices but one, while a slice of a tensor de-
fined by fixing all but two indices, i.e., A(:, j, k), A(i, :, k),
A(i, j, :) denote mode-1, mode-2, mode-3 tubes of A, and
A(:, :, k), A(:, j, :), A(i, :, :) denote the frontal, lateral, and
horizontal slices of A. Furthermore, A(i, :, :) and A(:, j, :)
are also called tensor row and tensor column. For easy rep-
resentation, we use A(k) to denote A(:, :, k). For an n1 ×
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n2 × n3 tensor A, its Frobenius norm is defined as ∥A∥F =√
n1∑
i=1

n2∑
j=1

n3∑
k=1

A2
ijk. For a tensor column X ∈ Rn1×1×n3 , we

define ℓ∞∗ norm as ∥X∥∞∗ = max
i

∥X (i, 1, :)∥2, and ℓ∞

norm as ∥X∥∞ = max
ijk

|Xijk|. The transpose of a vector or

a matrix is denoted with a superscript T , and the transpose of
a tensor is denoted with a superscript †. We use [n] to denote
the index set {1, 2, . . . , n}, and [n1] × [n2] to denote the set
{(1, 1), (1, 2), . . . , (1, n2), (2, 1), . . . , (n1, n2)}.

Definition 1. [14] Given an invertible discrete transform
L : R1×1×n → R1×1×n, the elementwise multiplication
◦, and a, b ∈ R1×1×n, the tubal-scalar multiplication is
defined as

a • b = L−1(L(a) ◦ L(b)),
where L−1 is the inverse of L.

Definition 2. [14] The L-product C = A • B of A ∈
Rn1×n2×k and B ∈ Rn2×n3×k is a tensor of size n1×n3×k,

with C(i, j, :) =
n2∑
s=0

A(i, s, :) • B(s, j, :), for i ∈ [n1] and

j ∈ [n3].

Definition 3. [14, 17] Let A ∈ Rn1×n2×n3 , then the trans-
pose A† ∈ Rn2×n1×n3 is such that L(A†)(i) = (L(A)(i))T ,
i ∈ [n3].

Definition 4. [14, 17] Identity tensor based on L-product is
defined as I ∈ Rm×m×n with L(I)(i), i ∈ [n] are m × m
identity matrices.

Definition 5. [14] A tensor A ∈ Rm×m×n is invertible if
there exists a tensor A−1 ∈ Rm×m×n such that A • A−1 =
A−1 • A = I.

Definition 6. A is L-orthogonal if A† • A = A • A† = I.

Definition 7. [14] The L-SVD of A ∈ Rn1×n2×n3 is given
by A = U •Σ • V†, where U and V are L-orthogonal tensors
of size n1 × n1 × n3 and n2 × n2 × n3 respectively, and Σ is
a diagonal tensor of size n1 × n2 × n3. The entries in Σ are
called the singular values of A, and the number of non-zero
tubal-scalars of Σ is called the L-rank of A.

Definition 8. [14] If A ∈ Rn1×n2×n3 with L-rank of r,
the r-dimensional tensor-column subspace S spanned by the
columns of A is defined as

S = {X |X = A1 • c1 +A2 • c2 + · · ·+An2 • cn2}

where cj ,j ∈ [n2], is an arbitrary tubal scalar of length n3.

Remark - If S is spanned by the columns of A ∈
Rn1×n2×n3 , P , A • (A† • A)−1 • A† is an orthogonal
projection onto S when A† • A is invertible.

Definition 9. The incoherence of an r-dimensional subspace
S is defined as

µ(S) , n1

r
max

j
∥P(:, j, :)∥2F ,

Fig. 1. An illustration of the tubal-sampling and elementwise-
sampling patterns.

2.2. Problem Statement

Let V ∈ Rn1×1×n3 denote a signal with its entries are sam-
pled with replacement, and the given subspace S is spanned
by the columns of U ∈ Rn1×n2×n3 . Then we want to find out
that how many samples are required to decided whether a sig-
nal belongs to a given subspace with high probability. We as-
sume the dimension of S is n2. Here, for signal V , we consid-
er two types of sampling: tubal-sampling and elementwise-
sampling, as showed in Fig. 1.

Tubal-sampling: Let Ω1 be the index set of samples and
Ω1 ⊂ [n1]. If i ∈ Ω1, V(i, 1, :) is a sample.

Elementwise-sampling: Let Ω2 be the index set of sam-
ples and Ω2 ⊂ [n1] × [n3], i.e., if (i, j) ∈ Ω2, V(i, 1, j) is a
sample.

For Ω ∈ {Ω1,Ω2}, and m = |Ω|, where |Ω| denotes the
cardinality of Ω, and we hope to determine the value of m so
that we can decide wether V belongs S based on samples with
high probability.

3. MAIN THEOREMS

Let VΩ denote the sampling signal, and the energies of VΩ

outside S with tubal-sampling and elementwise-sampling are
bounded with high probability.

3.1. Main Theorem with Tubal-sampling

When the sampling method is tubal-sampling, Ω = Ω1. Then
VΩ1 ∈ Rm×1×n3 denotes the sampling signal with its entries
VΩ1(i, 1, :) = V(Ω1(i), 1, :). We define PΩ1 = UΩ1 • (U

†
Ω1

•
UΩ1)

−1 • U†
Ω1

as the projection where UΩ1 ∈ Rm×n2×n3 de-
notes the tensor organized by the horizontal slices of U indi-
cated by Ω1, that is UΩ1(i, :, :) = U(Ω1(i), :, :). If V ∈ S,
∥VΩ1 −PΩ1 • VΩ1∥

2
F = 0. Then we have the following.

Theorem 1. Let δ > 0 and m ≥ 8
3n2µ(S) log( 2n2n3

δ ). Then
with probability at least 1− 4δ,

m(1− α)− cn2µ(S) β
(1−γ)

n1
∥V − P • V∥2F ≤
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∥VΩ1 − PΩ1 • VΩ1∥
2
F ≤ (1 + α)

m

n1
∥V − P • V∥2F (1)

holds, where

α =

√
2(n1∥Y∥2

∞∗−∥Y∥2
F )

m∥Y∥2
F

log( 1δ )+
2(n1∥Y∥2

∞∗−∥Y∥2
F )

3m∥Y∥2
F

log( 1δ ),

β =
(
1 + 2

√
log( 1δ )

)2

, γ =
√

8n2µ(S)
3m log( 2n2n3

δ ), and c is

a constant satisfying ∥L(V)∥2F = c∥V∥2F .

3.2. Main Theorem with Elementwise-sampling

For convenience of next discussion, we first introduce the op-
eration unfold(·) and lmat(·) here. For A ∈ Rn1×n2×k,

unfold(A) =
[
A(1)T A(2)T · · · A(n3)T

]T
,

and the operation fold(·) is the inverse operation of unfold(·).
Motivated by the definition of t-product in [15] and the

cosine transform product in [17], we introduce the L-product
based on block matrix tools. For tensor A ∈ Rn1×n2×k, we
use lmat(A) to denote a spacial structured block matrix de-
termined by the frontal slices of A, such that the L-product
V = A • C, where V ∈ Rn1×1×k and C ∈ Rn2×1×k, can
be represented as unfold(V) = lmat(A)unfold(C). The for-
m of the block matrix varies with the discrete transformation
[15, 18, 19], i.e., when the transform L is discrete Fourier
transform,

lmat(A) =


A(1) A(k) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(k) A(k−1) · · · A(1)

 ,

and when the transform L is discrete cosine transform,
lmat(A) = ((In3 +Zn3)⊗ In1)

−1(T +H)((In3 +Zn3)⊗
In2), where ⊗ is the Kronecker product [20, 17], Ini denotes
ni × ni, i ∈ [3], identity matrix, Zn3 is the n3 × n3 circular
upshift matrix, and T + H is the following n1n3 × n2n3

block Toeplitz-plus-Hankel matrix [18, 19, 17].

T +H =


A(1) A(2) · · · A(k)

A(2) A(1) · · · A(k−1)

...
...

. . .
...

A(k) A(k−1) · · · A(1)

+


A(2) · · · A(k) 0

...
... A(k)

A(k) 0 · · ·
...

0 A(k) · · · A(2)

 .

For elementwise-sampling, Ω = Ω2, and the subspace
S ⊂ Rn1×1×n3 should be mapped into a vector subspace
S ⊂ Rn1n3 . Then the vector subspace S be spanned by the
columns of lmat(U), and for all V ∈ S, unfold(V) ∈ S. Let

VΩ2 ∈ Rn1×1×n3 denotes the sampling signal with its entries
satisfied

VΩ2(i, 1, j) =

{
V(i, 1, j), (i, j) ∈ Ω2;
0, otherwise. (2)

Let vΩ2 = unfold(VΩ2) and PΩ2 = UΩ2(U
T
Ω2

UΩ2)
−1UT

Ω2
,

where UΩ2 satisfies that UΩ2((j−1)n1+i, :) = lmat(U)((j−
1)n1 + i, :), for (i, j) ∈ Ω2 while UΩ2((j − 1)n1 + i, :) = 0

for (i, j) /∈ Ω2. If V ∈ S, ∥vΩ2 − PΩ2vΩ2∥
2
2 = 0. Then we

have the following.

Theorem 2. Let δ > 0, m ≥ 8
3n2n3µ(S) log(

2n2n3

δ ). Then
with probability at least 1− 4δ

m(1− α)− n2n3µ(S)
β

(1−γ)

n1n3
cos2(θ) ∥V − P • V∥2F ≤

∥vΩ2 − PΩ2vΩ2∥
2
2 ≤ (1 + α)

m

n1n3
cos2(θ) ∥V − P • V∥2F

(3)
holds, where

α =

√
2(n1n3∥Y∥2

∞−∥Y∥2
F )

m∥Y∥2
F

log( 1δ )+
2(n1n3∥Y∥2

∞−∥Y∥2
F )

3m∥Y∥2
F

log( 1δ ),

β =
(
1 + 2

√
log( 1δ )

)2

, γ =
√

8n2n3bµ(S)
3m log( 2n2n3

δ ),

µ(S) is the coherence of S [11], and θ is the angle between
unfold(Y) and S⊥. When the transform L is the discrete
Fourier transform, we have µ(S) = µ(S) and θ = 0.

The proofs of Theorem 1 and Theorem 2 can be found in
[21].

4. MATCHED SUBSPACE DETECTION

We adopt discrete Fourier transform (DFT) as the transform
L, and the tensor product used in Theorem 1 and Theorem 2
changes into t-product (represented as ∗). Then we have the
detection set up as followings. Our hypotheses are H0 : V ∈
S and H1 : V /∈ S .

4.1. Matched Subspace Detection with Tubal-sampling

Under tubal-sampling, the test statistic is

t(VΩ1) = ∥VΩ1 − PΩ1 ∗ VΩ1∥2F
H1

≷
H0

η. (4)

In the noiseless case, the detection threshold η = 0. The-
orem 1 shows that for δ > 0 and m ≥ 8

3n2µ(S) log( 2n2

δ ), the
probability of detection is PD = P[t(VΩ1) > 0|H1] ≥ 1−4δ,
and the probability of false alarm is PFA = P[t(VΩ1) >
0|H0] = 0, since when V ∈ S , ∥VΩ1 −PΩ1 ∗ VΩ1∥2F = 0.

When there is Gaussian white noise N ∈ Rn1×1×n3 with
its entries N (i, 1, k) ∼ N(0, 1), i ∈ [n1], j ∈ [n3], the ob-
served signal can be represented as W = VΩ1 + NΩ1 where
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NΩ1 obtained by the same sampling as VΩ1 . And the test
statistic is represented as following

t(W) = ∥W − PΩ1
∗W∥2F

H1

≷
H0

ηp. (5)

Then from [22], we have t(W) is distributed as non-central
χ2-distribution with degree of freedom (m− n2)n3 and non-
centrality parameter λ2

2 = ∥VΩ1−PΩ1∗VΩ1∥2F . For a request-
ed probability of false alarm PFA = p, the detection threshold
ηp can be obtained according to P[t(W) > ηp|H0] ≤ p, and
it can be simplified as P[χ2

(m−n2)n3
(0) ≤ ηp] ≥ 1− p. Then

the detection probability PD = 1− P[χ2
(m−n2)n3

(λ2
2) ≤ ηp].

4.2. Matched Subspace Detection with Elementwise-
sampling

For elementwise-sampling, the test statistic is represented as

t(VΩ2) = ∥vΩ2 − PΩ2vΩ2∥22
H1

≷
H0

η. (6)

In the noiseless case, the detection threshold η = 0. Theo-
rem 2 shows that for δ > 0 and m ≥ 8

3n2n3µ(S) log( 2n2n3

δ ),
the probability of detection is PD = P[t(VΩ2) > 0|H1] ≥ 1−
4δ, and the probability of false alarm is PFA = P[t(VΩ2) >
0|H0] = 0, since when V ∈ S, ∥vΩ2 − PΩ2vΩ2∥22 = 0.

When there is Gaussian white noise N ∈ Rn1×1×n3 ,
the observed signal can be represented as W = VΩ2 + NΩ2

where NΩ2
obtained by the same sampling as VΩ2

. Let w =
unfold(W), and the test statistic can be represented as follows

t(W) = ∥w − PΩ2w∥22
H1

≷
H0

ηp. (7)

And from [22], we have t(W) is distributed as a non-central
χ2-distribution with degree of freedom m − n2n3 and non-
centrality parameter λ2

1 = ∥vΩ2 − PΩ2vΩ2∥22. Then for a
requested probability of false alarm PFA = p, the detec-
tion threshold ηp can be obtained according to P[t(W) >
ηp|H0] ≤ p, and it can be rewritten as P[χ2

m−n2n3
(0) ≤

ηp] ≥ 1− p. Then the detection probability PD = P[t(W) >
ηp|H1] = 1− P[χ2

m−n2n3
(λ2

1) ≤ ηp].

5. NUMERICAL EXPERIMENTS

In this section, we examine our main results with simulations
based on t-product. We take U ∈ R50×10×50 with tubal-rank
of 10 to span the subspace S. The signal is represented as
V ∈ R50×1×50. Let m denote the number of samples, then
then we compute the projection residual of V based on the
samples for both V ∈ S and V ∈ S⊥. And Fig. 2 and Fig.
3 are the examination of our main results based on t-product
with tubal-sampling and elementwise-sampling, respectively.

Fig. 2(a) and Fig. 3(a) show that the projection residual
is always positive when V ∈ S⊥, as long as the number of
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Fig. 2. Simulation results for tubal-sampling over 20 runs
with n1 = 50, n2 = 10, n3 = 50 and µ(S) ≈ 1.1. (a) is
the the projection residual ∥VΩ1 − PΩ1 ∗ VΩ1∥

2
F with V ∈ S ,

and (b) shows the the projection residual with V ∈ S⊥.
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Fig. 3. Simulation results for elementwise-sampling over 20
runs with n1 = 50, n2 = 10, n3 = 50 and µ(S) ≈ 1.1. (a)
is the the projection residual ∥vΩ2 − PΩ2vΩ2∥

2
2 with V ∈ S,

and (b) shows the the projection residual with V ∈ S⊥.

samples m > rµ(S) log(r) with tubal-sampling, and m >
r × n3(S) log(rn3) with elementwise-sampling where r is
the dimensionality and n3 is the size of the third dimension
of S. When V ∈ S, Fig. 2(b) and Fig. 3(b) show that the
projection residual is zero.

6. CONCLUSION

In this paper, we extend conventional matched subspace
detection to tensor matched subspace detection based on
L-product. We have shown that it is possible to detect
whether a highly incomplete tensor belongs to a subspace
when the number of samples is slightly greater than r for
tubal-sampling while r×n3 for elementwise-sampling. Sim-
ulations have demonstrate the effectiveness of our methods.
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